This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutative law for cardinal addition. Exercise 4.56(c) of Mendelson p. 258. (Contributed by NM, 24-Sep-2004) (Revised by Mario Carneiro, 29-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djucomen | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1oex | ⊢ 1o ∈ V | |
| 2 | xpsnen2g | ⊢ ( ( 1o ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { 1o } × 𝐴 ) ≈ 𝐴 ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( { 1o } × 𝐴 ) ≈ 𝐴 ) |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) | |
| 6 | 4 5 | mpan | ⊢ ( 𝐵 ∈ 𝑊 → ( { ∅ } × 𝐵 ) ≈ 𝐵 ) |
| 7 | ensym | ⊢ ( ( { 1o } × 𝐴 ) ≈ 𝐴 → 𝐴 ≈ ( { 1o } × 𝐴 ) ) | |
| 8 | ensym | ⊢ ( ( { ∅ } × 𝐵 ) ≈ 𝐵 → 𝐵 ≈ ( { ∅ } × 𝐵 ) ) | |
| 9 | incom | ⊢ ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐴 ) ) | |
| 10 | xp01disjl | ⊢ ( ( { ∅ } × 𝐵 ) ∩ ( { 1o } × 𝐴 ) ) = ∅ | |
| 11 | 9 10 | eqtri | ⊢ ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ∅ |
| 12 | djuenun | ⊢ ( ( 𝐴 ≈ ( { 1o } × 𝐴 ) ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ∧ ( ( { 1o } × 𝐴 ) ∩ ( { ∅ } × 𝐵 ) ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) | |
| 13 | 11 12 | mp3an3 | ⊢ ( ( 𝐴 ≈ ( { 1o } × 𝐴 ) ∧ 𝐵 ≈ ( { ∅ } × 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) |
| 14 | 7 8 13 | syl2an | ⊢ ( ( ( { 1o } × 𝐴 ) ≈ 𝐴 ∧ ( { ∅ } × 𝐵 ) ≈ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) |
| 15 | 3 6 14 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) ) |
| 16 | df-dju | ⊢ ( 𝐵 ⊔ 𝐴 ) = ( ( { ∅ } × 𝐵 ) ∪ ( { 1o } × 𝐴 ) ) | |
| 17 | 16 | equncomi | ⊢ ( 𝐵 ⊔ 𝐴 ) = ( ( { 1o } × 𝐴 ) ∪ ( { ∅ } × 𝐵 ) ) |
| 18 | 15 17 | breqtrrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐵 ⊔ 𝐴 ) ) |