This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Hartogs function at a set X is weakly dominated by ~P ( X X. X ) . This follows from a more precise analysis of the bound used in hartogs to prove that ( harX ) is an ordinal. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | harwdom | ⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) ≼* 𝒫 ( 𝑋 × 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } | |
| 2 | eqid | ⊢ { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } = { 〈 𝑠 , 𝑡 〉 ∣ ∃ 𝑤 ∈ 𝑦 ∃ 𝑧 ∈ 𝑦 ( ( 𝑠 = ( 𝑓 ‘ 𝑤 ) ∧ 𝑡 = ( 𝑓 ‘ 𝑧 ) ) ∧ 𝑤 E 𝑧 ) } | |
| 3 | 1 2 | hartogslem1 | ⊢ ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ ( 𝑋 ∈ 𝑉 → ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝑋 } ) ) |
| 4 | 3 | simp2i | ⊢ Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
| 5 | 3 | simp1i | ⊢ dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) |
| 6 | sqxpexg | ⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 × 𝑋 ) ∈ V ) | |
| 7 | 6 | pwexd | ⊢ ( 𝑋 ∈ 𝑉 → 𝒫 ( 𝑋 × 𝑋 ) ∈ V ) |
| 8 | ssexg | ⊢ ( ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) ∧ 𝒫 ( 𝑋 × 𝑋 ) ∈ V ) → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) | |
| 9 | 5 7 8 | sylancr | ⊢ ( 𝑋 ∈ 𝑉 → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) |
| 10 | funex | ⊢ ( ( Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) | |
| 11 | 4 9 10 | sylancr | ⊢ ( 𝑋 ∈ 𝑉 → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ) |
| 12 | funfn | ⊢ ( Fun { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ↔ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) | |
| 13 | 4 12 | mpbi | ⊢ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } |
| 14 | 13 | a1i | ⊢ ( 𝑋 ∈ 𝑉 → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
| 15 | 3 | simp3i | ⊢ ( 𝑋 ∈ 𝑉 → ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝑋 } ) |
| 16 | harval | ⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) = { 𝑥 ∈ On ∣ 𝑥 ≼ 𝑋 } ) | |
| 17 | 15 16 | eqtr4d | ⊢ ( 𝑋 ∈ 𝑉 → ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = ( har ‘ 𝑋 ) ) |
| 18 | df-fo | ⊢ ( { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } : dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } –onto→ ( har ‘ 𝑋 ) ↔ ( { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } Fn dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ ran { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } = ( har ‘ 𝑋 ) ) ) | |
| 19 | 14 17 18 | sylanbrc | ⊢ ( 𝑋 ∈ 𝑉 → { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } : dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } –onto→ ( har ‘ 𝑋 ) ) |
| 20 | fowdom | ⊢ ( ( { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∈ V ∧ { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } : dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } –onto→ ( har ‘ 𝑋 ) ) → ( har ‘ 𝑋 ) ≼* dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) | |
| 21 | 11 19 20 | syl2anc | ⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) ≼* dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ) |
| 22 | ssdomg | ⊢ ( 𝒫 ( 𝑋 × 𝑋 ) ∈ V → ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ⊆ 𝒫 ( 𝑋 × 𝑋 ) → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼ 𝒫 ( 𝑋 × 𝑋 ) ) ) | |
| 23 | 7 5 22 | mpisyl | ⊢ ( 𝑋 ∈ 𝑉 → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼ 𝒫 ( 𝑋 × 𝑋 ) ) |
| 24 | domwdom | ⊢ ( dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼ 𝒫 ( 𝑋 × 𝑋 ) → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼* 𝒫 ( 𝑋 × 𝑋 ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑋 ∈ 𝑉 → dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼* 𝒫 ( 𝑋 × 𝑋 ) ) |
| 26 | wdomtr | ⊢ ( ( ( har ‘ 𝑋 ) ≼* dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ∧ dom { 〈 𝑟 , 𝑦 〉 ∣ ( ( ( dom 𝑟 ⊆ 𝑋 ∧ ( I ↾ dom 𝑟 ) ⊆ 𝑟 ∧ 𝑟 ⊆ ( dom 𝑟 × dom 𝑟 ) ) ∧ ( 𝑟 ∖ I ) We dom 𝑟 ) ∧ 𝑦 = dom OrdIso ( ( 𝑟 ∖ I ) , dom 𝑟 ) ) } ≼* 𝒫 ( 𝑋 × 𝑋 ) ) → ( har ‘ 𝑋 ) ≼* 𝒫 ( 𝑋 × 𝑋 ) ) | |
| 27 | 21 25 26 | syl2anc | ⊢ ( 𝑋 ∈ 𝑉 → ( har ‘ 𝑋 ) ≼* 𝒫 ( 𝑋 × 𝑋 ) ) |