This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by Peter Mazsa, 2-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrdg4 | ⊢ rec ( 𝐹 , 𝐴 ) = ∪ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrdg3 | ⊢ rec ( 𝐹 , 𝐴 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } | |
| 2 | an12 | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) | |
| 3 | df-fn | ⊢ ( 𝑓 Fn 𝑥 ↔ ( Fun 𝑓 ∧ dom 𝑓 = 𝑥 ) ) | |
| 4 | ancom | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 = 𝑥 ) ↔ ( dom 𝑓 = 𝑥 ∧ Fun 𝑓 ) ) | |
| 5 | eqcom | ⊢ ( dom 𝑓 = 𝑥 ↔ 𝑥 = dom 𝑓 ) | |
| 6 | 5 | anbi1i | ⊢ ( ( dom 𝑓 = 𝑥 ∧ Fun 𝑓 ) ↔ ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ) |
| 7 | 3 4 6 | 3bitri | ⊢ ( 𝑓 Fn 𝑥 ↔ ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ) |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑓 Fn 𝑥 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ↔ ( ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 9 | anass | ⊢ ( ( ( 𝑥 = dom 𝑓 ∧ Fun 𝑓 ) ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ↔ ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) ) | |
| 10 | 2 8 9 | 3bitri | ⊢ ( ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ↔ ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) ) |
| 11 | 10 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) ) |
| 12 | vex | ⊢ 𝑓 ∈ V | |
| 13 | 12 | dmex | ⊢ dom 𝑓 ∈ V |
| 14 | eleq1 | ⊢ ( 𝑥 = dom 𝑓 → ( 𝑥 ∈ On ↔ dom 𝑓 ∈ On ) ) | |
| 15 | raleq | ⊢ ( 𝑥 = dom 𝑓 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑥 = dom 𝑓 → ( ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 17 | 16 | anbi2d | ⊢ ( 𝑥 = dom 𝑓 → ( ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) ) |
| 18 | 13 17 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ ( Fun 𝑓 ∧ ( 𝑥 ∈ On ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 19 | 11 18 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 20 | df-rex | ⊢ ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ∃ 𝑥 ( 𝑥 ∈ On ∧ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) | |
| 21 | eldif | ⊢ ( 𝑓 ∈ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ↔ ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ) | |
| 22 | elin | ⊢ ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ↔ ( 𝑓 ∈ Funs ∧ 𝑓 ∈ ( ◡ Domain “ On ) ) ) | |
| 23 | 12 | elfuns | ⊢ ( 𝑓 ∈ Funs ↔ Fun 𝑓 ) |
| 24 | 12 | elima | ⊢ ( 𝑓 ∈ ( ◡ Domain “ On ) ↔ ∃ 𝑥 ∈ On 𝑥 ◡ Domain 𝑓 ) |
| 25 | df-rex | ⊢ ( ∃ 𝑥 ∈ On 𝑥 ◡ Domain 𝑓 ↔ ∃ 𝑥 ( 𝑥 ∈ On ∧ 𝑥 ◡ Domain 𝑓 ) ) | |
| 26 | vex | ⊢ 𝑥 ∈ V | |
| 27 | 26 12 | brcnv | ⊢ ( 𝑥 ◡ Domain 𝑓 ↔ 𝑓 Domain 𝑥 ) |
| 28 | 12 26 | brdomain | ⊢ ( 𝑓 Domain 𝑥 ↔ 𝑥 = dom 𝑓 ) |
| 29 | 27 28 | bitri | ⊢ ( 𝑥 ◡ Domain 𝑓 ↔ 𝑥 = dom 𝑓 ) |
| 30 | 29 | anbi1ci | ⊢ ( ( 𝑥 ∈ On ∧ 𝑥 ◡ Domain 𝑓 ) ↔ ( 𝑥 = dom 𝑓 ∧ 𝑥 ∈ On ) ) |
| 31 | 30 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ On ∧ 𝑥 ◡ Domain 𝑓 ) ↔ ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ 𝑥 ∈ On ) ) |
| 32 | 13 14 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ 𝑥 ∈ On ) ↔ dom 𝑓 ∈ On ) |
| 33 | 31 32 | bitri | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ On ∧ 𝑥 ◡ Domain 𝑓 ) ↔ dom 𝑓 ∈ On ) |
| 34 | 24 25 33 | 3bitri | ⊢ ( 𝑓 ∈ ( ◡ Domain “ On ) ↔ dom 𝑓 ∈ On ) |
| 35 | 23 34 | anbi12i | ⊢ ( ( 𝑓 ∈ Funs ∧ 𝑓 ∈ ( ◡ Domain “ On ) ) ↔ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) |
| 36 | 22 35 | bitri | ⊢ ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ↔ ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ) |
| 37 | 36 | anbi1i | ⊢ ( ( 𝑓 ∈ ( Funs ∩ ( ◡ Domain “ On ) ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ↔ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ) |
| 38 | brdif | ⊢ ( 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) 𝑦 ↔ ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ) ) | |
| 39 | vex | ⊢ 𝑦 ∈ V | |
| 40 | 12 39 | brco | ⊢ ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ↔ ∃ 𝑥 ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ) |
| 41 | 28 | anbi1i | ⊢ ( ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ↔ ( 𝑥 = dom 𝑓 ∧ 𝑥 ◡ E 𝑦 ) ) |
| 42 | 41 | exbii | ⊢ ( ∃ 𝑥 ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ↔ ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ 𝑥 ◡ E 𝑦 ) ) |
| 43 | breq1 | ⊢ ( 𝑥 = dom 𝑓 → ( 𝑥 ◡ E 𝑦 ↔ dom 𝑓 ◡ E 𝑦 ) ) | |
| 44 | 13 43 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = dom 𝑓 ∧ 𝑥 ◡ E 𝑦 ) ↔ dom 𝑓 ◡ E 𝑦 ) |
| 45 | 42 44 | bitri | ⊢ ( ∃ 𝑥 ( 𝑓 Domain 𝑥 ∧ 𝑥 ◡ E 𝑦 ) ↔ dom 𝑓 ◡ E 𝑦 ) |
| 46 | 13 39 | brcnv | ⊢ ( dom 𝑓 ◡ E 𝑦 ↔ 𝑦 E dom 𝑓 ) |
| 47 | 13 | epeli | ⊢ ( 𝑦 E dom 𝑓 ↔ 𝑦 ∈ dom 𝑓 ) |
| 48 | 46 47 | bitri | ⊢ ( dom 𝑓 ◡ E 𝑦 ↔ 𝑦 ∈ dom 𝑓 ) |
| 49 | 40 45 48 | 3bitri | ⊢ ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ↔ 𝑦 ∈ dom 𝑓 ) |
| 50 | 49 | anbi1i | ⊢ ( ( 𝑓 ( ◡ E ∘ Domain ) 𝑦 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ) ↔ ( 𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ) ) |
| 51 | 38 50 | bitri | ⊢ ( 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) 𝑦 ↔ ( 𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ) ) |
| 52 | onelon | ⊢ ( ( dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → 𝑦 ∈ On ) | |
| 53 | 52 | 3adant1 | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → 𝑦 ∈ On ) |
| 54 | brun | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ↔ ( 〈 𝑓 , 𝑦 〉 ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) 𝑥 ∨ 〈 𝑓 , 𝑦 〉 ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) 𝑥 ) ) | |
| 55 | brxp | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) 𝑥 ↔ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × { ∅ } ) ∧ 𝑥 ∈ { ∪ { 𝐴 } } ) ) | |
| 56 | opelxp | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × { ∅ } ) ↔ ( 𝑓 ∈ V ∧ 𝑦 ∈ { ∅ } ) ) | |
| 57 | 12 56 | mpbiran | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × { ∅ } ) ↔ 𝑦 ∈ { ∅ } ) |
| 58 | velsn | ⊢ ( 𝑦 ∈ { ∅ } ↔ 𝑦 = ∅ ) | |
| 59 | 57 58 | bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × { ∅ } ) ↔ 𝑦 = ∅ ) |
| 60 | velsn | ⊢ ( 𝑥 ∈ { ∪ { 𝐴 } } ↔ 𝑥 = ∪ { 𝐴 } ) | |
| 61 | 59 60 | anbi12i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ∈ ( V × { ∅ } ) ∧ 𝑥 ∈ { ∪ { 𝐴 } } ) ↔ ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) |
| 62 | 55 61 | bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) 𝑥 ↔ ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) |
| 63 | brun | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) 𝑥 ↔ ( 〈 𝑓 , 𝑦 〉 ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) 𝑥 ∨ 〈 𝑓 , 𝑦 〉 ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) 𝑥 ) ) | |
| 64 | 26 | brresi | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) 𝑥 ↔ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × Limits ) ∧ 〈 𝑓 , 𝑦 〉 ( Bigcup ∘ Img ) 𝑥 ) ) |
| 65 | opelxp | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × Limits ) ↔ ( 𝑓 ∈ V ∧ 𝑦 ∈ Limits ) ) | |
| 66 | 12 65 | mpbiran | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × Limits ) ↔ 𝑦 ∈ Limits ) |
| 67 | 39 | ellimits | ⊢ ( 𝑦 ∈ Limits ↔ Lim 𝑦 ) |
| 68 | 66 67 | bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × Limits ) ↔ Lim 𝑦 ) |
| 69 | opex | ⊢ 〈 𝑓 , 𝑦 〉 ∈ V | |
| 70 | 69 26 | brco | ⊢ ( 〈 𝑓 , 𝑦 〉 ( Bigcup ∘ Img ) 𝑥 ↔ ∃ 𝑧 ( 〈 𝑓 , 𝑦 〉 Img 𝑧 ∧ 𝑧 Bigcup 𝑥 ) ) |
| 71 | vex | ⊢ 𝑧 ∈ V | |
| 72 | 12 39 71 | brimg | ⊢ ( 〈 𝑓 , 𝑦 〉 Img 𝑧 ↔ 𝑧 = ( 𝑓 “ 𝑦 ) ) |
| 73 | 26 | brbigcup | ⊢ ( 𝑧 Bigcup 𝑥 ↔ ∪ 𝑧 = 𝑥 ) |
| 74 | 72 73 | anbi12i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 Img 𝑧 ∧ 𝑧 Bigcup 𝑥 ) ↔ ( 𝑧 = ( 𝑓 “ 𝑦 ) ∧ ∪ 𝑧 = 𝑥 ) ) |
| 75 | 74 | exbii | ⊢ ( ∃ 𝑧 ( 〈 𝑓 , 𝑦 〉 Img 𝑧 ∧ 𝑧 Bigcup 𝑥 ) ↔ ∃ 𝑧 ( 𝑧 = ( 𝑓 “ 𝑦 ) ∧ ∪ 𝑧 = 𝑥 ) ) |
| 76 | 12 | imaex | ⊢ ( 𝑓 “ 𝑦 ) ∈ V |
| 77 | unieq | ⊢ ( 𝑧 = ( 𝑓 “ 𝑦 ) → ∪ 𝑧 = ∪ ( 𝑓 “ 𝑦 ) ) | |
| 78 | 77 | eqeq1d | ⊢ ( 𝑧 = ( 𝑓 “ 𝑦 ) → ( ∪ 𝑧 = 𝑥 ↔ ∪ ( 𝑓 “ 𝑦 ) = 𝑥 ) ) |
| 79 | 76 78 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑓 “ 𝑦 ) ∧ ∪ 𝑧 = 𝑥 ) ↔ ∪ ( 𝑓 “ 𝑦 ) = 𝑥 ) |
| 80 | eqcom | ⊢ ( ∪ ( 𝑓 “ 𝑦 ) = 𝑥 ↔ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) | |
| 81 | 79 80 | bitri | ⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑓 “ 𝑦 ) ∧ ∪ 𝑧 = 𝑥 ) ↔ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) |
| 82 | 70 75 81 | 3bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( Bigcup ∘ Img ) 𝑥 ↔ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) |
| 83 | 68 82 | anbi12i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ∈ ( V × Limits ) ∧ 〈 𝑓 , 𝑦 〉 ( Bigcup ∘ Img ) 𝑥 ) ↔ ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) |
| 84 | 64 83 | bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) 𝑥 ↔ ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) |
| 85 | 26 | brresi | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) 𝑥 ↔ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × ran Succ ) ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) 𝑥 ) ) |
| 86 | opelxp | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × ran Succ ) ↔ ( 𝑓 ∈ V ∧ 𝑦 ∈ ran Succ ) ) | |
| 87 | 12 86 | mpbiran | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × ran Succ ) ↔ 𝑦 ∈ ran Succ ) |
| 88 | 39 | elrn | ⊢ ( 𝑦 ∈ ran Succ ↔ ∃ 𝑧 𝑧 Succ 𝑦 ) |
| 89 | 71 39 | brsuccf | ⊢ ( 𝑧 Succ 𝑦 ↔ 𝑦 = suc 𝑧 ) |
| 90 | 89 | exbii | ⊢ ( ∃ 𝑧 𝑧 Succ 𝑦 ↔ ∃ 𝑧 𝑦 = suc 𝑧 ) |
| 91 | 87 88 90 | 3bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ ( V × ran Succ ) ↔ ∃ 𝑧 𝑦 = suc 𝑧 ) |
| 92 | 69 26 | brco | ⊢ ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) 𝑥 ↔ ∃ 𝑎 ( 〈 𝑓 , 𝑦 〉 ( Apply ∘ pprod ( I , Bigcup ) ) 𝑎 ∧ 𝑎 FullFun 𝐹 𝑥 ) ) |
| 93 | vex | ⊢ 𝑎 ∈ V | |
| 94 | 69 93 | brco | ⊢ ( 〈 𝑓 , 𝑦 〉 ( Apply ∘ pprod ( I , Bigcup ) ) 𝑎 ↔ ∃ 𝑧 ( 〈 𝑓 , 𝑦 〉 pprod ( I , Bigcup ) 𝑧 ∧ 𝑧 Apply 𝑎 ) ) |
| 95 | 12 39 71 | brpprod3a | ⊢ ( 〈 𝑓 , 𝑦 〉 pprod ( I , Bigcup ) 𝑧 ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝑓 I 𝑎 ∧ 𝑦 Bigcup 𝑏 ) ) |
| 96 | 3anrot | ⊢ ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝑓 I 𝑎 ∧ 𝑦 Bigcup 𝑏 ) ↔ ( 𝑓 I 𝑎 ∧ 𝑦 Bigcup 𝑏 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) | |
| 97 | 93 | ideq | ⊢ ( 𝑓 I 𝑎 ↔ 𝑓 = 𝑎 ) |
| 98 | equcom | ⊢ ( 𝑓 = 𝑎 ↔ 𝑎 = 𝑓 ) | |
| 99 | 97 98 | bitri | ⊢ ( 𝑓 I 𝑎 ↔ 𝑎 = 𝑓 ) |
| 100 | vex | ⊢ 𝑏 ∈ V | |
| 101 | 100 | brbigcup | ⊢ ( 𝑦 Bigcup 𝑏 ↔ ∪ 𝑦 = 𝑏 ) |
| 102 | eqcom | ⊢ ( ∪ 𝑦 = 𝑏 ↔ 𝑏 = ∪ 𝑦 ) | |
| 103 | 101 102 | bitri | ⊢ ( 𝑦 Bigcup 𝑏 ↔ 𝑏 = ∪ 𝑦 ) |
| 104 | biid | ⊢ ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 𝑧 = 〈 𝑎 , 𝑏 〉 ) | |
| 105 | 99 103 104 | 3anbi123i | ⊢ ( ( 𝑓 I 𝑎 ∧ 𝑦 Bigcup 𝑏 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ↔ ( 𝑎 = 𝑓 ∧ 𝑏 = ∪ 𝑦 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
| 106 | 96 105 | bitri | ⊢ ( ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝑓 I 𝑎 ∧ 𝑦 Bigcup 𝑏 ) ↔ ( 𝑎 = 𝑓 ∧ 𝑏 = ∪ 𝑦 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
| 107 | 106 | 2exbii | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑧 = 〈 𝑎 , 𝑏 〉 ∧ 𝑓 I 𝑎 ∧ 𝑦 Bigcup 𝑏 ) ↔ ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝑓 ∧ 𝑏 = ∪ 𝑦 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ) |
| 108 | vuniex | ⊢ ∪ 𝑦 ∈ V | |
| 109 | opeq1 | ⊢ ( 𝑎 = 𝑓 → 〈 𝑎 , 𝑏 〉 = 〈 𝑓 , 𝑏 〉 ) | |
| 110 | 109 | eqeq2d | ⊢ ( 𝑎 = 𝑓 → ( 𝑧 = 〈 𝑎 , 𝑏 〉 ↔ 𝑧 = 〈 𝑓 , 𝑏 〉 ) ) |
| 111 | opeq2 | ⊢ ( 𝑏 = ∪ 𝑦 → 〈 𝑓 , 𝑏 〉 = 〈 𝑓 , ∪ 𝑦 〉 ) | |
| 112 | 111 | eqeq2d | ⊢ ( 𝑏 = ∪ 𝑦 → ( 𝑧 = 〈 𝑓 , 𝑏 〉 ↔ 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 ) ) |
| 113 | 12 108 110 112 | ceqsex2v | ⊢ ( ∃ 𝑎 ∃ 𝑏 ( 𝑎 = 𝑓 ∧ 𝑏 = ∪ 𝑦 ∧ 𝑧 = 〈 𝑎 , 𝑏 〉 ) ↔ 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 ) |
| 114 | 95 107 113 | 3bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 pprod ( I , Bigcup ) 𝑧 ↔ 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 ) |
| 115 | 114 | anbi1i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 pprod ( I , Bigcup ) 𝑧 ∧ 𝑧 Apply 𝑎 ) ↔ ( 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 ∧ 𝑧 Apply 𝑎 ) ) |
| 116 | 115 | exbii | ⊢ ( ∃ 𝑧 ( 〈 𝑓 , 𝑦 〉 pprod ( I , Bigcup ) 𝑧 ∧ 𝑧 Apply 𝑎 ) ↔ ∃ 𝑧 ( 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 ∧ 𝑧 Apply 𝑎 ) ) |
| 117 | opex | ⊢ 〈 𝑓 , ∪ 𝑦 〉 ∈ V | |
| 118 | breq1 | ⊢ ( 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 → ( 𝑧 Apply 𝑎 ↔ 〈 𝑓 , ∪ 𝑦 〉 Apply 𝑎 ) ) | |
| 119 | 117 118 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 ∧ 𝑧 Apply 𝑎 ) ↔ 〈 𝑓 , ∪ 𝑦 〉 Apply 𝑎 ) |
| 120 | 12 108 93 | brapply | ⊢ ( 〈 𝑓 , ∪ 𝑦 〉 Apply 𝑎 ↔ 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) ) |
| 121 | 119 120 | bitri | ⊢ ( ∃ 𝑧 ( 𝑧 = 〈 𝑓 , ∪ 𝑦 〉 ∧ 𝑧 Apply 𝑎 ) ↔ 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) ) |
| 122 | 94 116 121 | 3bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( Apply ∘ pprod ( I , Bigcup ) ) 𝑎 ↔ 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) ) |
| 123 | 93 26 | brfullfun | ⊢ ( 𝑎 FullFun 𝐹 𝑥 ↔ 𝑥 = ( 𝐹 ‘ 𝑎 ) ) |
| 124 | 122 123 | anbi12i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ( Apply ∘ pprod ( I , Bigcup ) ) 𝑎 ∧ 𝑎 FullFun 𝐹 𝑥 ) ↔ ( 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 125 | 124 | exbii | ⊢ ( ∃ 𝑎 ( 〈 𝑓 , 𝑦 〉 ( Apply ∘ pprod ( I , Bigcup ) ) 𝑎 ∧ 𝑎 FullFun 𝐹 𝑥 ) ↔ ∃ 𝑎 ( 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑎 ) ) ) |
| 126 | fvex | ⊢ ( 𝑓 ‘ ∪ 𝑦 ) ∈ V | |
| 127 | fveq2 | ⊢ ( 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) | |
| 128 | 127 | eqeq2d | ⊢ ( 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) → ( 𝑥 = ( 𝐹 ‘ 𝑎 ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 129 | 126 128 | ceqsexv | ⊢ ( ∃ 𝑎 ( 𝑎 = ( 𝑓 ‘ ∪ 𝑦 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑎 ) ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) |
| 130 | 92 125 129 | 3bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) 𝑥 ↔ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) |
| 131 | 91 130 | anbi12i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ∈ ( V × ran Succ ) ∧ 〈 𝑓 , 𝑦 〉 ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) 𝑥 ) ↔ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 132 | 85 131 | bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) 𝑥 ↔ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 133 | 84 132 | orbi12i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) 𝑥 ∨ 〈 𝑓 , 𝑦 〉 ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) 𝑥 ) ↔ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 134 | 63 133 | bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) 𝑥 ↔ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 135 | 62 134 | orbi12i | ⊢ ( ( 〈 𝑓 , 𝑦 〉 ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) 𝑥 ∨ 〈 𝑓 , 𝑦 〉 ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) 𝑥 ) ↔ ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 136 | 54 135 | bitri | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ↔ ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 137 | onzsl | ⊢ ( 𝑦 ∈ On ↔ ( 𝑦 = ∅ ∨ ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 ∨ ( 𝑦 ∈ V ∧ Lim 𝑦 ) ) ) | |
| 138 | nlim0 | ⊢ ¬ Lim ∅ | |
| 139 | limeq | ⊢ ( 𝑦 = ∅ → ( Lim 𝑦 ↔ Lim ∅ ) ) | |
| 140 | 138 139 | mtbiri | ⊢ ( 𝑦 = ∅ → ¬ Lim 𝑦 ) |
| 141 | 140 | intnanrd | ⊢ ( 𝑦 = ∅ → ¬ ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) |
| 142 | nsuceq0 | ⊢ suc 𝑧 ≠ ∅ | |
| 143 | neeq2 | ⊢ ( 𝑦 = ∅ → ( suc 𝑧 ≠ 𝑦 ↔ suc 𝑧 ≠ ∅ ) ) | |
| 144 | 142 143 | mpbiri | ⊢ ( 𝑦 = ∅ → suc 𝑧 ≠ 𝑦 ) |
| 145 | 144 | necomd | ⊢ ( 𝑦 = ∅ → 𝑦 ≠ suc 𝑧 ) |
| 146 | 145 | neneqd | ⊢ ( 𝑦 = ∅ → ¬ 𝑦 = suc 𝑧 ) |
| 147 | 146 | nexdv | ⊢ ( 𝑦 = ∅ → ¬ ∃ 𝑧 𝑦 = suc 𝑧 ) |
| 148 | 147 | intnanrd | ⊢ ( 𝑦 = ∅ → ¬ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 149 | ioran | ⊢ ( ¬ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ( ¬ ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∧ ¬ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) | |
| 150 | 141 148 149 | sylanbrc | ⊢ ( 𝑦 = ∅ → ¬ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 151 | orel2 | ⊢ ( ¬ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) ) | |
| 152 | 150 151 | syl | ⊢ ( 𝑦 = ∅ → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) ) |
| 153 | iftrue | ⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( 𝐴 ∈ V , 𝐴 , ∅ ) ) | |
| 154 | unisnif | ⊢ ∪ { 𝐴 } = if ( 𝐴 ∈ V , 𝐴 , ∅ ) | |
| 155 | 153 154 | eqtr4di | ⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = ∪ { 𝐴 } ) |
| 156 | 155 | eqeq2d | ⊢ ( 𝑦 = ∅ → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ 𝑥 = ∪ { 𝐴 } ) ) |
| 157 | 156 | biimprd | ⊢ ( 𝑦 = ∅ → ( 𝑥 = ∪ { 𝐴 } → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 158 | 157 | adantld | ⊢ ( 𝑦 = ∅ → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 159 | 152 158 | syld | ⊢ ( 𝑦 = ∅ → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 160 | 156 | biimpd | ⊢ ( 𝑦 = ∅ → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → 𝑥 = ∪ { 𝐴 } ) ) |
| 161 | 160 | anc2li | ⊢ ( 𝑦 = ∅ → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) ) |
| 162 | orc | ⊢ ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) | |
| 163 | 161 162 | syl6 | ⊢ ( 𝑦 = ∅ → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 164 | 159 163 | impbid | ⊢ ( 𝑦 = ∅ → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 165 | neeq1 | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑦 ≠ ∅ ↔ suc 𝑧 ≠ ∅ ) ) | |
| 166 | 142 165 | mpbiri | ⊢ ( 𝑦 = suc 𝑧 → 𝑦 ≠ ∅ ) |
| 167 | 166 | neneqd | ⊢ ( 𝑦 = suc 𝑧 → ¬ 𝑦 = ∅ ) |
| 168 | 167 | intnanrd | ⊢ ( 𝑦 = suc 𝑧 → ¬ ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) |
| 169 | 168 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) |
| 170 | orel1 | ⊢ ( ¬ ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) | |
| 171 | 169 170 | syl | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 172 | nlimsucg | ⊢ ( 𝑧 ∈ V → ¬ Lim suc 𝑧 ) | |
| 173 | 172 | elv | ⊢ ¬ Lim suc 𝑧 |
| 174 | limeq | ⊢ ( 𝑦 = suc 𝑧 → ( Lim 𝑦 ↔ Lim suc 𝑧 ) ) | |
| 175 | 173 174 | mtbiri | ⊢ ( 𝑦 = suc 𝑧 → ¬ Lim 𝑦 ) |
| 176 | 175 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ Lim 𝑦 ) |
| 177 | 176 | intnanrd | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) |
| 178 | orel1 | ⊢ ( ¬ ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) → ( ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) | |
| 179 | 177 178 | syl | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 180 | 142 | neii | ⊢ ¬ suc 𝑧 = ∅ |
| 181 | 180 | iffalsei | ⊢ if ( suc 𝑧 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 182 | iffalse | ⊢ ( ¬ Lim suc 𝑧 → if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) | |
| 183 | 71 172 182 | mp2b | ⊢ if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 184 | 181 183 | eqtri | ⊢ if ( suc 𝑧 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 185 | eqeq1 | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑦 = ∅ ↔ suc 𝑧 = ∅ ) ) | |
| 186 | unieq | ⊢ ( 𝑦 = suc 𝑧 → ∪ 𝑦 = ∪ suc 𝑧 ) | |
| 187 | 186 | fveq2d | ⊢ ( 𝑦 = suc 𝑧 → ( 𝑓 ‘ ∪ 𝑦 ) = ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 188 | 187 | fveq2d | ⊢ ( 𝑦 = suc 𝑧 → ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 189 | 174 188 | ifbieq2d | ⊢ ( 𝑦 = suc 𝑧 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) |
| 190 | 185 189 | ifbieq2d | ⊢ ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( suc 𝑧 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) ) |
| 191 | 184 190 188 | 3eqtr4a | ⊢ ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) |
| 192 | 191 | rexlimivw | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) |
| 193 | 192 | eqeq2d | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 194 | 193 | biimprd | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 195 | 194 | adantld | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 196 | 171 179 195 | 3syld | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 197 | rexex | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ∃ 𝑧 𝑦 = suc 𝑧 ) | |
| 198 | 193 | biimpd | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 199 | olc | ⊢ ( ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) → ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) | |
| 200 | 199 | olcd | ⊢ ( ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 201 | 197 198 200 | syl6an | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 202 | 196 201 | impbid | ⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 203 | 140 | con2i | ⊢ ( Lim 𝑦 → ¬ 𝑦 = ∅ ) |
| 204 | 203 | intnanrd | ⊢ ( Lim 𝑦 → ¬ ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ) |
| 205 | 204 170 | syl | ⊢ ( Lim 𝑦 → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 206 | 175 | exlimiv | ⊢ ( ∃ 𝑧 𝑦 = suc 𝑧 → ¬ Lim 𝑦 ) |
| 207 | 206 | con2i | ⊢ ( Lim 𝑦 → ¬ ∃ 𝑧 𝑦 = suc 𝑧 ) |
| 208 | 207 | intnanrd | ⊢ ( Lim 𝑦 → ¬ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 209 | orel2 | ⊢ ( ¬ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) → ( ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) ) | |
| 210 | 208 209 | syl | ⊢ ( Lim 𝑦 → ( ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) ) |
| 211 | 203 | iffalsed | ⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 212 | iftrue | ⊢ ( Lim 𝑦 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) = ∪ ( 𝑓 “ 𝑦 ) ) | |
| 213 | 211 212 | eqtrd | ⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = ∪ ( 𝑓 “ 𝑦 ) ) |
| 214 | 213 | eqeq2d | ⊢ ( Lim 𝑦 → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) |
| 215 | 214 | biimprd | ⊢ ( Lim 𝑦 → ( 𝑥 = ∪ ( 𝑓 “ 𝑦 ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 216 | 215 | adantld | ⊢ ( Lim 𝑦 → ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 217 | 205 210 216 | 3syld | ⊢ ( Lim 𝑦 → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 218 | 217 | adantl | ⊢ ( ( 𝑦 ∈ V ∧ Lim 𝑦 ) → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) → 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 219 | 214 | biimpd | ⊢ ( Lim 𝑦 → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) |
| 220 | 219 | anc2li | ⊢ ( Lim 𝑦 → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ) ) |
| 221 | orc | ⊢ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) → ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) | |
| 222 | 221 | olcd | ⊢ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 223 | 220 222 | syl6 | ⊢ ( Lim 𝑦 → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 224 | 223 | adantl | ⊢ ( ( 𝑦 ∈ V ∧ Lim 𝑦 ) → ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) → ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 225 | 218 224 | impbid | ⊢ ( ( 𝑦 ∈ V ∧ Lim 𝑦 ) → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 226 | 164 202 225 | 3jaoi | ⊢ ( ( 𝑦 = ∅ ∨ ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 ∨ ( 𝑦 ∈ V ∧ Lim 𝑦 ) ) → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 227 | 137 226 | sylbi | ⊢ ( 𝑦 ∈ On → ( ( ( 𝑦 = ∅ ∧ 𝑥 = ∪ { 𝐴 } ) ∨ ( ( Lim 𝑦 ∧ 𝑥 = ∪ ( 𝑓 “ 𝑦 ) ) ∨ ( ∃ 𝑧 𝑦 = suc 𝑧 ∧ 𝑥 = ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 228 | 136 227 | bitrid | ⊢ ( 𝑦 ∈ On → ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ↔ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 229 | 53 228 | syl | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ↔ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 230 | 26 69 | brcnv | ⊢ ( 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ↔ 〈 𝑓 , 𝑦 〉 Apply 𝑥 ) |
| 231 | 12 39 26 | brapply | ⊢ ( 〈 𝑓 , 𝑦 〉 Apply 𝑥 ↔ 𝑥 = ( 𝑓 ‘ 𝑦 ) ) |
| 232 | 230 231 | bitri | ⊢ ( 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ↔ 𝑥 = ( 𝑓 ‘ 𝑦 ) ) |
| 233 | 232 | a1i | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → ( 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ↔ 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) |
| 234 | 229 233 | anbi12d | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → ( ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ↔ ( 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ∧ 𝑥 = ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 235 | 234 | biancomd | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → ( ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ↔ ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ∧ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 236 | 235 | exbidv | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → ( ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ∧ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 237 | df-br | ⊢ ( 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ↔ 〈 𝑓 , 𝑦 〉 ∈ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) | |
| 238 | 69 | elfix | ⊢ ( 〈 𝑓 , 𝑦 〉 ∈ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ↔ 〈 𝑓 , 𝑦 〉 ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 〈 𝑓 , 𝑦 〉 ) |
| 239 | 69 69 | brco | ⊢ ( 〈 𝑓 , 𝑦 〉 ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 〈 𝑓 , 𝑦 〉 ↔ ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ) |
| 240 | 237 238 239 | 3bitri | ⊢ ( 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ↔ ∃ 𝑥 ( 〈 𝑓 , 𝑦 〉 ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) 𝑥 ∧ 𝑥 ◡ Apply 〈 𝑓 , 𝑦 〉 ) ) |
| 241 | fvex | ⊢ ( 𝑓 ‘ 𝑦 ) ∈ V | |
| 242 | 241 | eqvinc | ⊢ ( ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ∃ 𝑥 ( 𝑥 = ( 𝑓 ‘ 𝑦 ) ∧ 𝑥 = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 243 | 236 240 242 | 3bitr4g | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → ( 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 244 | 243 | notbid | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓 ) → ( ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ↔ ¬ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 245 | 244 | 3expia | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( 𝑦 ∈ dom 𝑓 → ( ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ↔ ¬ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 246 | 245 | pm5.32d | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( ( 𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ) ↔ ( 𝑦 ∈ dom 𝑓 ∧ ¬ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 247 | annim | ⊢ ( ( 𝑦 ∈ dom 𝑓 ∧ ¬ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ¬ ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) | |
| 248 | 246 247 | bitrdi | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( ( 𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) 𝑦 ) ↔ ¬ ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 249 | 51 248 | bitrid | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) 𝑦 ↔ ¬ ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 250 | 249 | exbidv | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( ∃ 𝑦 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) 𝑦 ↔ ∃ 𝑦 ¬ ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 251 | exnal | ⊢ ( ∃ 𝑦 ¬ ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ¬ ∀ 𝑦 ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) | |
| 252 | 250 251 | bitr2di | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( ¬ ∀ 𝑦 ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ∃ 𝑦 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) 𝑦 ) ) |
| 253 | 12 | eldm | ⊢ ( 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ↔ ∃ 𝑦 𝑓 ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) 𝑦 ) |
| 254 | 252 253 | bitr4di | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( ¬ ∀ 𝑦 ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ) |
| 255 | 254 | con1bid | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 256 | df-ral | ⊢ ( ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ∀ 𝑦 ( 𝑦 ∈ dom 𝑓 → ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) | |
| 257 | 255 256 | bitr4di | ⊢ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) → ( ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ↔ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 258 | 257 | pm5.32i | ⊢ ( ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ↔ ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 259 | anass | ⊢ ( ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) | |
| 260 | 258 259 | bitri | ⊢ ( ( ( Fun 𝑓 ∧ dom 𝑓 ∈ On ) ∧ ¬ 𝑓 ∈ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 261 | 21 37 260 | 3bitri | ⊢ ( 𝑓 ∈ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ↔ ( Fun 𝑓 ∧ ( dom 𝑓 ∈ On ∧ ∀ 𝑦 ∈ dom 𝑓 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 262 | 19 20 261 | 3bitr4ri | ⊢ ( 𝑓 ∈ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 263 | 262 | eqabi | ⊢ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 264 | 263 | unieqi | ⊢ ∪ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐴 ∈ V , 𝐴 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 265 | 1 264 | eqtr4i | ⊢ rec ( 𝐹 , 𝐴 ) = ∪ ( ( Funs ∩ ( ◡ Domain “ On ) ) ∖ dom ( ( ◡ E ∘ Domain ) ∖ Fix ( ◡ Apply ∘ ( ( ( V × { ∅ } ) × { ∪ { 𝐴 } } ) ∪ ( ( ( Bigcup ∘ Img ) ↾ ( V × Limits ) ) ∪ ( ( FullFun 𝐹 ∘ ( Apply ∘ pprod ( I , Bigcup ) ) ) ↾ ( V × ran Succ ) ) ) ) ) ) ) |