This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation over Bigcup . (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brbigcup.1 | ⊢ 𝐵 ∈ V | |
| Assertion | brbigcup | ⊢ ( 𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brbigcup.1 | ⊢ 𝐵 ∈ V | |
| 2 | relbigcup | ⊢ Rel Bigcup | |
| 3 | 2 | brrelex1i | ⊢ ( 𝐴 Bigcup 𝐵 → 𝐴 ∈ V ) |
| 4 | eleq1 | ⊢ ( ∪ 𝐴 = 𝐵 → ( ∪ 𝐴 ∈ V ↔ 𝐵 ∈ V ) ) | |
| 5 | 1 4 | mpbiri | ⊢ ( ∪ 𝐴 = 𝐵 → ∪ 𝐴 ∈ V ) |
| 6 | uniexb | ⊢ ( 𝐴 ∈ V ↔ ∪ 𝐴 ∈ V ) | |
| 7 | 5 6 | sylibr | ⊢ ( ∪ 𝐴 = 𝐵 → 𝐴 ∈ V ) |
| 8 | breq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 Bigcup 𝐵 ↔ 𝐴 Bigcup 𝐵 ) ) | |
| 9 | unieq | ⊢ ( 𝑥 = 𝐴 → ∪ 𝑥 = ∪ 𝐴 ) | |
| 10 | 9 | eqeq1d | ⊢ ( 𝑥 = 𝐴 → ( ∪ 𝑥 = 𝐵 ↔ ∪ 𝐴 = 𝐵 ) ) |
| 11 | vex | ⊢ 𝑥 ∈ V | |
| 12 | df-bigcup | ⊢ Bigcup = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) | |
| 13 | brxp | ⊢ ( 𝑥 ( V × V ) 𝐵 ↔ ( 𝑥 ∈ V ∧ 𝐵 ∈ V ) ) | |
| 14 | 11 1 13 | mpbir2an | ⊢ 𝑥 ( V × V ) 𝐵 |
| 15 | epel | ⊢ ( 𝑦 E 𝑧 ↔ 𝑦 ∈ 𝑧 ) | |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑧 ∈ 𝑥 𝑦 E 𝑧 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ) |
| 17 | vex | ⊢ 𝑦 ∈ V | |
| 18 | 17 11 | coep | ⊢ ( 𝑦 ( E ∘ E ) 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 E 𝑧 ) |
| 19 | eluni2 | ⊢ ( 𝑦 ∈ ∪ 𝑥 ↔ ∃ 𝑧 ∈ 𝑥 𝑦 ∈ 𝑧 ) | |
| 20 | 16 18 19 | 3bitr4ri | ⊢ ( 𝑦 ∈ ∪ 𝑥 ↔ 𝑦 ( E ∘ E ) 𝑥 ) |
| 21 | 11 1 12 14 20 | brtxpsd3 | ⊢ ( 𝑥 Bigcup 𝐵 ↔ 𝐵 = ∪ 𝑥 ) |
| 22 | eqcom | ⊢ ( 𝐵 = ∪ 𝑥 ↔ ∪ 𝑥 = 𝐵 ) | |
| 23 | 21 22 | bitri | ⊢ ( 𝑥 Bigcup 𝐵 ↔ ∪ 𝑥 = 𝐵 ) |
| 24 | 8 10 23 | vtoclbg | ⊢ ( 𝐴 ∈ V → ( 𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵 ) ) |
| 25 | 3 7 24 | pm5.21nii | ⊢ ( 𝐴 Bigcup 𝐵 ↔ ∪ 𝐴 = 𝐵 ) |