This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalization of dfrdg2 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrdg3 | ⊢ rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrdg2 | ⊢ ( 𝐼 ∈ V → rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) | |
| 2 | iftrue | ⊢ ( 𝐼 ∈ V → if ( 𝐼 ∈ V , 𝐼 , ∅ ) = 𝐼 ) | |
| 3 | 2 | ifeq1d | ⊢ ( 𝐼 ∈ V → if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 4 | 3 | eqeq2d | ⊢ ( 𝐼 ∈ V → ( ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝐼 ∈ V → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 6 | 5 | anbi2d | ⊢ ( 𝐼 ∈ V → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 7 | 6 | rexbidv | ⊢ ( 𝐼 ∈ V → ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 8 | 7 | abbidv | ⊢ ( 𝐼 ∈ V → { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 9 | 8 | unieqd | ⊢ ( 𝐼 ∈ V → ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 10 | 1 9 | eqtr4d | ⊢ ( 𝐼 ∈ V → rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 11 | 0ex | ⊢ ∅ ∈ V | |
| 12 | dfrdg2 | ⊢ ( ∅ ∈ V → rec ( 𝐹 , ∅ ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) | |
| 13 | 11 12 | ax-mp | ⊢ rec ( 𝐹 , ∅ ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 14 | rdgprc | ⊢ ( ¬ 𝐼 ∈ V → rec ( 𝐹 , 𝐼 ) = rec ( 𝐹 , ∅ ) ) | |
| 15 | iffalse | ⊢ ( ¬ 𝐼 ∈ V → if ( 𝐼 ∈ V , 𝐼 , ∅ ) = ∅ ) | |
| 16 | 15 | ifeq1d | ⊢ ( ¬ 𝐼 ∈ V → if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 17 | 16 | eqeq2d | ⊢ ( ¬ 𝐼 ∈ V → ( ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 18 | 17 | ralbidv | ⊢ ( ¬ 𝐼 ∈ V → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 19 | 18 | anbi2d | ⊢ ( ¬ 𝐼 ∈ V → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( ¬ 𝐼 ∈ V → ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 21 | 20 | abbidv | ⊢ ( ¬ 𝐼 ∈ V → { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 22 | 21 | unieqd | ⊢ ( ¬ 𝐼 ∈ V → ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , ∅ , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 23 | 13 14 22 | 3eqtr4a | ⊢ ( ¬ 𝐼 ∈ V → rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 24 | 10 23 | pm2.61i | ⊢ rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , if ( 𝐼 ∈ V , 𝐼 , ∅ ) , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |