This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Binary relation on a composition. (Contributed by NM, 21-Sep-2004) (Revised by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelco.1 | ⊢ 𝐴 ∈ V | |
| opelco.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | brco | ⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelco.1 | ⊢ 𝐴 ∈ V | |
| 2 | opelco.2 | ⊢ 𝐵 ∈ V | |
| 3 | brcog | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ( 𝐶 ∘ 𝐷 ) 𝐵 ↔ ∃ 𝑥 ( 𝐴 𝐷 𝑥 ∧ 𝑥 𝐶 𝐵 ) ) |