This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006) Avoid ax-10 and ax-11 . (Revised by GG, 20-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex2v.1 | ⊢ 𝐴 ∈ V | |
| ceqsex2v.2 | ⊢ 𝐵 ∈ V | ||
| ceqsex2v.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ceqsex2v.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| Assertion | ceqsex2v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex2v.1 | ⊢ 𝐴 ∈ V | |
| 2 | ceqsex2v.2 | ⊢ 𝐵 ∈ V | |
| 3 | ceqsex2v.3 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | ceqsex2v.4 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 5 | 3anass | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) | |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 7 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 9 | 8 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ) |
| 10 | 3 | anbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 11 | 10 | exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) ) |
| 12 | 1 11 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ) |
| 13 | 2 4 | ceqsexv | ⊢ ( ∃ 𝑦 ( 𝑦 = 𝐵 ∧ 𝜓 ) ↔ 𝜒 ) |
| 14 | 9 12 13 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝜑 ) ↔ 𝜒 ) |