This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express union of singleton in terms of if . (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unisnif | ⊢ ∪ { 𝐴 } = if ( 𝐴 ∈ V , 𝐴 , ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue | ⊢ ( 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = 𝐴 ) | |
| 2 | unisng | ⊢ ( 𝐴 ∈ V → ∪ { 𝐴 } = 𝐴 ) | |
| 3 | 1 2 | eqtr4d | ⊢ ( 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∪ { 𝐴 } ) |
| 4 | iffalse | ⊢ ( ¬ 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∅ ) | |
| 5 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 6 | 5 | biimpi | ⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
| 7 | 6 | unieqd | ⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } = ∪ ∅ ) |
| 8 | uni0 | ⊢ ∪ ∅ = ∅ | |
| 9 | 7 8 | eqtrdi | ⊢ ( ¬ 𝐴 ∈ V → ∪ { 𝐴 } = ∅ ) |
| 10 | 4 9 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∪ { 𝐴 } ) |
| 11 | 3 10 | pm2.61i | ⊢ if ( 𝐴 ∈ V , 𝐴 , ∅ ) = ∪ { 𝐴 } |
| 12 | 11 | eqcomi | ⊢ ∪ { 𝐴 } = if ( 𝐴 ∈ V , 𝐴 , ∅ ) |