This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlimsucg | ⊢ ( 𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord | ⊢ ( Lim suc 𝐴 → Ord suc 𝐴 ) | |
| 2 | ordsuc | ⊢ ( Ord 𝐴 ↔ Ord suc 𝐴 ) | |
| 3 | 1 2 | sylibr | ⊢ ( Lim suc 𝐴 → Ord 𝐴 ) |
| 4 | limuni | ⊢ ( Lim suc 𝐴 → suc 𝐴 = ∪ suc 𝐴 ) | |
| 5 | ordunisuc | ⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) | |
| 6 | 5 | eqeq2d | ⊢ ( Ord 𝐴 → ( suc 𝐴 = ∪ suc 𝐴 ↔ suc 𝐴 = 𝐴 ) ) |
| 7 | ordirr | ⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) | |
| 8 | eleq2 | ⊢ ( suc 𝐴 = 𝐴 → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ 𝐴 ) ) | |
| 9 | 8 | notbid | ⊢ ( suc 𝐴 = 𝐴 → ( ¬ 𝐴 ∈ suc 𝐴 ↔ ¬ 𝐴 ∈ 𝐴 ) ) |
| 10 | 7 9 | syl5ibrcom | ⊢ ( Ord 𝐴 → ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ suc 𝐴 ) ) |
| 11 | sucidg | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ suc 𝐴 ) | |
| 12 | 11 | con3i | ⊢ ( ¬ 𝐴 ∈ suc 𝐴 → ¬ 𝐴 ∈ 𝑉 ) |
| 13 | 10 12 | syl6 | ⊢ ( Ord 𝐴 → ( suc 𝐴 = 𝐴 → ¬ 𝐴 ∈ 𝑉 ) ) |
| 14 | 6 13 | sylbid | ⊢ ( Ord 𝐴 → ( suc 𝐴 = ∪ suc 𝐴 → ¬ 𝐴 ∈ 𝑉 ) ) |
| 15 | 3 4 14 | sylc | ⊢ ( Lim suc 𝐴 → ¬ 𝐴 ∈ 𝑉 ) |
| 16 | 15 | con2i | ⊢ ( 𝐴 ∈ 𝑉 → ¬ Lim suc 𝐴 ) |