This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ellimits.1 | ⊢ 𝐴 ∈ V | |
| Assertion | ellimits | ⊢ ( 𝐴 ∈ Limits ↔ Lim 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimits.1 | ⊢ 𝐴 ∈ V | |
| 2 | df-limits | ⊢ Limits = ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ Limits ↔ 𝐴 ∈ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ) |
| 4 | eldif | ⊢ ( 𝐴 ∈ ( ( On ∩ Fix Bigcup ) ∖ { ∅ } ) ↔ ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ { ∅ } ) ) | |
| 5 | 3anan32 | ⊢ ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ↔ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ∧ 𝐴 ≠ ∅ ) ) | |
| 6 | df-lim | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) | |
| 7 | elin | ⊢ ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ↔ ( 𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ) | |
| 8 | 1 | elon | ⊢ ( 𝐴 ∈ On ↔ Ord 𝐴 ) |
| 9 | 1 | elfix | ⊢ ( 𝐴 ∈ Fix Bigcup ↔ 𝐴 Bigcup 𝐴 ) |
| 10 | 1 | brbigcup | ⊢ ( 𝐴 Bigcup 𝐴 ↔ ∪ 𝐴 = 𝐴 ) |
| 11 | eqcom | ⊢ ( ∪ 𝐴 = 𝐴 ↔ 𝐴 = ∪ 𝐴 ) | |
| 12 | 9 10 11 | 3bitri | ⊢ ( 𝐴 ∈ Fix Bigcup ↔ 𝐴 = ∪ 𝐴 ) |
| 13 | 8 12 | anbi12i | ⊢ ( ( 𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ↔ ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) |
| 14 | 7 13 | bitri | ⊢ ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ↔ ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ) |
| 15 | 1 | elsn | ⊢ ( 𝐴 ∈ { ∅ } ↔ 𝐴 = ∅ ) |
| 16 | 15 | necon3bbii | ⊢ ( ¬ 𝐴 ∈ { ∅ } ↔ 𝐴 ≠ ∅ ) |
| 17 | 14 16 | anbi12i | ⊢ ( ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ { ∅ } ) ↔ ( ( Ord 𝐴 ∧ 𝐴 = ∪ 𝐴 ) ∧ 𝐴 ≠ ∅ ) ) |
| 18 | 5 6 17 | 3bitr4ri | ⊢ ( ( 𝐴 ∈ ( On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ { ∅ } ) ↔ Lim 𝐴 ) |
| 19 | 3 4 18 | 3bitri | ⊢ ( 𝐴 ∈ Limits ↔ Lim 𝐴 ) |