This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Quantifier-free definition of class intersection. (Contributed by Scott Fenton, 13-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfint3 | ⊢ ∩ 𝐴 = ( V ∖ ( ◡ ( V ∖ E ) “ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfint2 | ⊢ ∩ 𝐴 = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } | |
| 2 | ralnex | ⊢ ( ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ ( V ∖ E ) 𝑥 ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑦 ◡ ( V ∖ E ) 𝑥 ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | vex | ⊢ 𝑥 ∈ V | |
| 5 | 3 4 | brcnv | ⊢ ( 𝑦 ◡ ( V ∖ E ) 𝑥 ↔ 𝑥 ( V ∖ E ) 𝑦 ) |
| 6 | brv | ⊢ 𝑥 V 𝑦 | |
| 7 | brdif | ⊢ ( 𝑥 ( V ∖ E ) 𝑦 ↔ ( 𝑥 V 𝑦 ∧ ¬ 𝑥 E 𝑦 ) ) | |
| 8 | 6 7 | mpbiran | ⊢ ( 𝑥 ( V ∖ E ) 𝑦 ↔ ¬ 𝑥 E 𝑦 ) |
| 9 | 5 8 | bitr2i | ⊢ ( ¬ 𝑥 E 𝑦 ↔ 𝑦 ◡ ( V ∖ E ) 𝑥 ) |
| 10 | 9 | con1bii | ⊢ ( ¬ 𝑦 ◡ ( V ∖ E ) 𝑥 ↔ 𝑥 E 𝑦 ) |
| 11 | epel | ⊢ ( 𝑥 E 𝑦 ↔ 𝑥 ∈ 𝑦 ) | |
| 12 | 10 11 | bitr2i | ⊢ ( 𝑥 ∈ 𝑦 ↔ ¬ 𝑦 ◡ ( V ∖ E ) 𝑥 ) |
| 13 | 12 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ ∀ 𝑦 ∈ 𝐴 ¬ 𝑦 ◡ ( V ∖ E ) 𝑥 ) |
| 14 | eldif | ⊢ ( 𝑥 ∈ ( V ∖ ( ◡ ( V ∖ E ) “ 𝐴 ) ) ↔ ( 𝑥 ∈ V ∧ ¬ 𝑥 ∈ ( ◡ ( V ∖ E ) “ 𝐴 ) ) ) | |
| 15 | 4 14 | mpbiran | ⊢ ( 𝑥 ∈ ( V ∖ ( ◡ ( V ∖ E ) “ 𝐴 ) ) ↔ ¬ 𝑥 ∈ ( ◡ ( V ∖ E ) “ 𝐴 ) ) |
| 16 | 4 | elima | ⊢ ( 𝑥 ∈ ( ◡ ( V ∖ E ) “ 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐴 𝑦 ◡ ( V ∖ E ) 𝑥 ) |
| 17 | 15 16 | xchbinx | ⊢ ( 𝑥 ∈ ( V ∖ ( ◡ ( V ∖ E ) “ 𝐴 ) ) ↔ ¬ ∃ 𝑦 ∈ 𝐴 𝑦 ◡ ( V ∖ E ) 𝑥 ) |
| 18 | 2 13 17 | 3bitr4ri | ⊢ ( 𝑥 ∈ ( V ∖ ( ◡ ( V ∖ E ) “ 𝐴 ) ) ↔ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ) |
| 19 | 18 | eqabi | ⊢ ( V ∖ ( ◡ ( V ∖ E ) “ 𝐴 ) ) = { 𝑥 ∣ ∀ 𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 } |
| 20 | 1 19 | eqtr4i | ⊢ ∩ 𝐴 = ( V ∖ ( ◡ ( V ∖ E ) “ 𝐴 ) ) |