This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the fixpoints of a class. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elfix.1 | ⊢ 𝐴 ∈ V | |
| Assertion | elfix | ⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 𝑅 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfix.1 | ⊢ 𝐴 ∈ V | |
| 2 | df-fix | ⊢ Fix 𝑅 = dom ( 𝑅 ∩ I ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 ∈ dom ( 𝑅 ∩ I ) ) |
| 4 | 1 | eldm | ⊢ ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 ) |
| 5 | brin | ⊢ ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝐴 𝑅 𝑥 ∧ 𝐴 I 𝑥 ) ) | |
| 6 | ancom | ⊢ ( ( 𝐴 𝑅 𝑥 ∧ 𝐴 I 𝑥 ) ↔ ( 𝐴 I 𝑥 ∧ 𝐴 𝑅 𝑥 ) ) | |
| 7 | vex | ⊢ 𝑥 ∈ V | |
| 8 | 7 | ideq | ⊢ ( 𝐴 I 𝑥 ↔ 𝐴 = 𝑥 ) |
| 9 | eqcom | ⊢ ( 𝐴 = 𝑥 ↔ 𝑥 = 𝐴 ) | |
| 10 | 8 9 | bitri | ⊢ ( 𝐴 I 𝑥 ↔ 𝑥 = 𝐴 ) |
| 11 | 10 | anbi1i | ⊢ ( ( 𝐴 I 𝑥 ∧ 𝐴 𝑅 𝑥 ) ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 12 | 5 6 11 | 3bitri | ⊢ ( 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑥 𝐴 ( 𝑅 ∩ I ) 𝑥 ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 14 | 4 13 | bitri | ⊢ ( 𝐴 ∈ dom ( 𝑅 ∩ I ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ) |
| 15 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝐴 𝑅 𝑥 ↔ 𝐴 𝑅 𝐴 ) ) | |
| 16 | 1 15 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ 𝐴 𝑅 𝑥 ) ↔ 𝐴 𝑅 𝐴 ) |
| 17 | 3 14 16 | 3bitri | ⊢ ( 𝐴 ∈ Fix 𝑅 ↔ 𝐴 𝑅 𝐴 ) |