This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rotation law for triple conjunction. (Contributed by NM, 8-Apr-1994) (Proof shortened by Wolf Lammen, 9-Jun-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 3anrot | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ) | |
| 2 | 3ancomb | ⊢ ( ( 𝜓 ∧ 𝜑 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) ) | |
| 3 | 1 2 | bitri | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( 𝜓 ∧ 𝜒 ∧ 𝜑 ) ) |