This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number is zero, a successor ordinal, or a limit ordinal number. (Contributed by NM, 1-Oct-2003) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onzsl | ⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ On → 𝐴 ∈ V ) | |
| 2 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 3 | ordzsl | ⊢ ( Ord 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) | |
| 4 | 3mix1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) | |
| 5 | 4 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ 𝐴 = ∅ ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 6 | 3mix2 | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝐴 ∈ V ∧ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 8 | 3mix3 | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) | |
| 9 | 5 7 8 | 3jaodan | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ Lim 𝐴 ) ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 10 | 3 9 | sylan2b | ⊢ ( ( 𝐴 ∈ V ∧ Ord 𝐴 ) → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 11 | 1 2 10 | syl2anc | ⊢ ( 𝐴 ∈ On → ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |
| 12 | 0elon | ⊢ ∅ ∈ On | |
| 13 | eleq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ On ↔ ∅ ∈ On ) ) | |
| 14 | 12 13 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ On ) |
| 15 | onsuc | ⊢ ( 𝑥 ∈ On → suc 𝑥 ∈ On ) | |
| 16 | eleq1 | ⊢ ( 𝐴 = suc 𝑥 → ( 𝐴 ∈ On ↔ suc 𝑥 ∈ On ) ) | |
| 17 | 15 16 | syl5ibrcom | ⊢ ( 𝑥 ∈ On → ( 𝐴 = suc 𝑥 → 𝐴 ∈ On ) ) |
| 18 | 17 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 → 𝐴 ∈ On ) |
| 19 | limelon | ⊢ ( ( 𝐴 ∈ V ∧ Lim 𝐴 ) → 𝐴 ∈ On ) | |
| 20 | 14 18 19 | 3jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) → 𝐴 ∈ On ) |
| 21 | 11 20 | impbii | ⊢ ( 𝐴 ∈ On ↔ ( 𝐴 = ∅ ∨ ∃ 𝑥 ∈ On 𝐴 = suc 𝑥 ∨ ( 𝐴 ∈ V ∧ Lim 𝐴 ) ) ) |