This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in the class of all functions. (Contributed by Scott Fenton, 18-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elfuns.1 | ⊢ 𝐹 ∈ V | |
| Assertion | elfuns | ⊢ ( 𝐹 ∈ Funs ↔ Fun 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfuns.1 | ⊢ 𝐹 ∈ V | |
| 2 | elrel | ⊢ ( ( Rel 𝐹 ∧ 𝑝 ∈ 𝐹 ) → ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ) | |
| 3 | 2 | ex | ⊢ ( Rel 𝐹 → ( 𝑝 ∈ 𝐹 → ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ) ) |
| 4 | elrel | ⊢ ( ( Rel 𝐹 ∧ 𝑞 ∈ 𝐹 ) → ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) | |
| 5 | 4 | ex | ⊢ ( Rel 𝐹 → ( 𝑞 ∈ 𝐹 → ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) ) |
| 6 | 3 5 | anim12d | ⊢ ( Rel 𝐹 → ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) → ( ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) ) ) |
| 7 | 6 | adantrd | ⊢ ( Rel 𝐹 → ( ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) → ( ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) ) ) |
| 8 | 7 | pm4.71rd | ⊢ ( Rel 𝐹 → ( ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ↔ ( ( ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) ) |
| 9 | 19.41vvvv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) | |
| 10 | ee4anv | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ↔ ( ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) ) | |
| 11 | 10 | anbi1i | ⊢ ( ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ( ( ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) |
| 12 | 9 11 | bitr2i | ⊢ ( ( ( ∃ 𝑥 ∃ 𝑦 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ ∃ 𝑎 ∃ 𝑧 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) |
| 13 | 8 12 | bitrdi | ⊢ ( Rel 𝐹 → ( ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ↔ ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) ) |
| 14 | 13 | 2exbidv | ⊢ ( Rel 𝐹 → ( ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ↔ ∃ 𝑝 ∃ 𝑞 ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) ) |
| 15 | excom13 | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑥 ∃ 𝑞 ∃ 𝑝 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) | |
| 16 | excom13 | ⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑦 ∃ 𝑝 ∃ 𝑞 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) | |
| 17 | exrot4 | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑎 ∃ 𝑧 ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) | |
| 18 | excom | ⊢ ( ∃ 𝑎 ∃ 𝑧 ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑧 ∃ 𝑎 ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) | |
| 19 | df-3an | ⊢ ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) | |
| 20 | 19 | 2exbii | ⊢ ( ∃ 𝑝 ∃ 𝑞 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) |
| 21 | opex | ⊢ 〈 𝑥 , 𝑦 〉 ∈ V | |
| 22 | opex | ⊢ 〈 𝑎 , 𝑧 〉 ∈ V | |
| 23 | eleq1 | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝑝 ∈ 𝐹 ↔ 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ) ) | |
| 24 | 23 | anbi1d | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ) ) |
| 25 | breq2 | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ↔ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ) ) | |
| 26 | 24 25 | anbi12d | ⊢ ( 𝑝 = 〈 𝑥 , 𝑦 〉 → ( ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ) ) ) |
| 27 | eleq1 | ⊢ ( 𝑞 = 〈 𝑎 , 𝑧 〉 → ( 𝑞 ∈ 𝐹 ↔ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ) | |
| 28 | 27 | anbi2d | ⊢ ( 𝑞 = 〈 𝑎 , 𝑧 〉 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ) ) |
| 29 | breq1 | ⊢ ( 𝑞 = 〈 𝑎 , 𝑧 〉 → ( 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ↔ 〈 𝑎 , 𝑧 〉 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ) ) | |
| 30 | vex | ⊢ 𝑥 ∈ V | |
| 31 | vex | ⊢ 𝑦 ∈ V | |
| 32 | 22 30 31 | brtxp | ⊢ ( 〈 𝑎 , 𝑧 〉 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ↔ ( 〈 𝑎 , 𝑧 〉 1st 𝑥 ∧ 〈 𝑎 , 𝑧 〉 ( ( V ∖ I ) ∘ 2nd ) 𝑦 ) ) |
| 33 | vex | ⊢ 𝑎 ∈ V | |
| 34 | vex | ⊢ 𝑧 ∈ V | |
| 35 | 33 34 | br1steq | ⊢ ( 〈 𝑎 , 𝑧 〉 1st 𝑥 ↔ 𝑥 = 𝑎 ) |
| 36 | equcom | ⊢ ( 𝑥 = 𝑎 ↔ 𝑎 = 𝑥 ) | |
| 37 | 35 36 | bitri | ⊢ ( 〈 𝑎 , 𝑧 〉 1st 𝑥 ↔ 𝑎 = 𝑥 ) |
| 38 | 22 31 | brco | ⊢ ( 〈 𝑎 , 𝑧 〉 ( ( V ∖ I ) ∘ 2nd ) 𝑦 ↔ ∃ 𝑥 ( 〈 𝑎 , 𝑧 〉 2nd 𝑥 ∧ 𝑥 ( V ∖ I ) 𝑦 ) ) |
| 39 | 33 34 | br2ndeq | ⊢ ( 〈 𝑎 , 𝑧 〉 2nd 𝑥 ↔ 𝑥 = 𝑧 ) |
| 40 | 39 | anbi1i | ⊢ ( ( 〈 𝑎 , 𝑧 〉 2nd 𝑥 ∧ 𝑥 ( V ∖ I ) 𝑦 ) ↔ ( 𝑥 = 𝑧 ∧ 𝑥 ( V ∖ I ) 𝑦 ) ) |
| 41 | 40 | exbii | ⊢ ( ∃ 𝑥 ( 〈 𝑎 , 𝑧 〉 2nd 𝑥 ∧ 𝑥 ( V ∖ I ) 𝑦 ) ↔ ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 ( V ∖ I ) 𝑦 ) ) |
| 42 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ( V ∖ I ) 𝑦 ↔ 𝑧 ( V ∖ I ) 𝑦 ) ) | |
| 43 | brv | ⊢ 𝑧 V 𝑦 | |
| 44 | brdif | ⊢ ( 𝑧 ( V ∖ I ) 𝑦 ↔ ( 𝑧 V 𝑦 ∧ ¬ 𝑧 I 𝑦 ) ) | |
| 45 | 43 44 | mpbiran | ⊢ ( 𝑧 ( V ∖ I ) 𝑦 ↔ ¬ 𝑧 I 𝑦 ) |
| 46 | 31 | ideq | ⊢ ( 𝑧 I 𝑦 ↔ 𝑧 = 𝑦 ) |
| 47 | equcom | ⊢ ( 𝑧 = 𝑦 ↔ 𝑦 = 𝑧 ) | |
| 48 | 46 47 | bitri | ⊢ ( 𝑧 I 𝑦 ↔ 𝑦 = 𝑧 ) |
| 49 | 48 | notbii | ⊢ ( ¬ 𝑧 I 𝑦 ↔ ¬ 𝑦 = 𝑧 ) |
| 50 | 45 49 | bitri | ⊢ ( 𝑧 ( V ∖ I ) 𝑦 ↔ ¬ 𝑦 = 𝑧 ) |
| 51 | 42 50 | bitrdi | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ( V ∖ I ) 𝑦 ↔ ¬ 𝑦 = 𝑧 ) ) |
| 52 | 51 | equsexvw | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝑧 ∧ 𝑥 ( V ∖ I ) 𝑦 ) ↔ ¬ 𝑦 = 𝑧 ) |
| 53 | 38 41 52 | 3bitri | ⊢ ( 〈 𝑎 , 𝑧 〉 ( ( V ∖ I ) ∘ 2nd ) 𝑦 ↔ ¬ 𝑦 = 𝑧 ) |
| 54 | 37 53 | anbi12i | ⊢ ( ( 〈 𝑎 , 𝑧 〉 1st 𝑥 ∧ 〈 𝑎 , 𝑧 〉 ( ( V ∖ I ) ∘ 2nd ) 𝑦 ) ↔ ( 𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧 ) ) |
| 55 | 32 54 | bitri | ⊢ ( 〈 𝑎 , 𝑧 〉 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ↔ ( 𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧 ) ) |
| 56 | 29 55 | bitrdi | ⊢ ( 𝑞 = 〈 𝑎 , 𝑧 〉 → ( 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ↔ ( 𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧 ) ) ) |
| 57 | 28 56 | anbi12d | ⊢ ( 𝑞 = 〈 𝑎 , 𝑧 〉 → ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ( 𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧 ) ) ) ) |
| 58 | an12 | ⊢ ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ( 𝑎 = 𝑥 ∧ ¬ 𝑦 = 𝑧 ) ) ↔ ( 𝑎 = 𝑥 ∧ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) ) | |
| 59 | 57 58 | bitrdi | ⊢ ( 𝑞 = 〈 𝑎 , 𝑧 〉 → ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 〈 𝑥 , 𝑦 〉 ) ↔ ( 𝑎 = 𝑥 ∧ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) ) ) |
| 60 | 21 22 26 59 | ceqsex2v | ⊢ ( ∃ 𝑝 ∃ 𝑞 ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ( 𝑎 = 𝑥 ∧ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) ) |
| 61 | 20 60 | bitr3i | ⊢ ( ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ( 𝑎 = 𝑥 ∧ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) ) |
| 62 | 61 | exbii | ⊢ ( ∃ 𝑎 ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑎 ( 𝑎 = 𝑥 ∧ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) ) |
| 63 | opeq1 | ⊢ ( 𝑎 = 𝑥 → 〈 𝑎 , 𝑧 〉 = 〈 𝑥 , 𝑧 〉 ) | |
| 64 | 63 | eleq1d | ⊢ ( 𝑎 = 𝑥 → ( 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ↔ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ) |
| 65 | 64 | anbi2d | ⊢ ( 𝑎 = 𝑥 → ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ↔ ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ) ) |
| 66 | 65 | anbi1d | ⊢ ( 𝑎 = 𝑥 → ( ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) ) |
| 67 | 66 | equsexvw | ⊢ ( ∃ 𝑎 ( 𝑎 = 𝑥 ∧ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑎 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) |
| 68 | 62 67 | bitri | ⊢ ( ∃ 𝑎 ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) |
| 69 | 68 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑎 ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ) |
| 70 | exanali | ⊢ ( ∃ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) ∧ ¬ 𝑦 = 𝑧 ) ↔ ¬ ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) | |
| 71 | 69 70 | bitri | ⊢ ( ∃ 𝑧 ∃ 𝑎 ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ¬ ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) |
| 72 | 17 18 71 | 3bitri | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ¬ ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) |
| 73 | 72 | exbii | ⊢ ( ∃ 𝑦 ∃ 𝑝 ∃ 𝑞 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑦 ¬ ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) |
| 74 | exnal | ⊢ ( ∃ 𝑦 ¬ ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ↔ ¬ ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) | |
| 75 | 16 73 74 | 3bitri | ⊢ ( ∃ 𝑞 ∃ 𝑝 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ¬ ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) |
| 76 | 75 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑞 ∃ 𝑝 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) |
| 77 | exnal | ⊢ ( ∃ 𝑥 ¬ ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) | |
| 78 | 15 76 77 | 3bitri | ⊢ ( ∃ 𝑝 ∃ 𝑞 ∃ 𝑥 ∃ 𝑦 ∃ 𝑎 ∃ 𝑧 ( ( 𝑝 = 〈 𝑥 , 𝑦 〉 ∧ 𝑞 = 〈 𝑎 , 𝑧 〉 ) ∧ ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) |
| 79 | 14 78 | bitrdi | ⊢ ( Rel 𝐹 → ( ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ↔ ¬ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) ) |
| 80 | 79 | con2bid | ⊢ ( Rel 𝐹 → ( ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ↔ ¬ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) |
| 81 | 80 | pm5.32i | ⊢ ( ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) ↔ ( Rel 𝐹 ∧ ¬ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) |
| 82 | dffun4 | ⊢ ( Fun 𝐹 ↔ ( Rel 𝐹 ∧ ∀ 𝑥 ∀ 𝑦 ∀ 𝑧 ( ( 〈 𝑥 , 𝑦 〉 ∈ 𝐹 ∧ 〈 𝑥 , 𝑧 〉 ∈ 𝐹 ) → 𝑦 = 𝑧 ) ) ) | |
| 83 | df-funs | ⊢ Funs = ( 𝒫 ( V × V ) ∖ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ) | |
| 84 | 83 | eleq2i | ⊢ ( 𝐹 ∈ Funs ↔ 𝐹 ∈ ( 𝒫 ( V × V ) ∖ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ) ) |
| 85 | eldif | ⊢ ( 𝐹 ∈ ( 𝒫 ( V × V ) ∖ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ) ↔ ( 𝐹 ∈ 𝒫 ( V × V ) ∧ ¬ 𝐹 ∈ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ) ) | |
| 86 | 1 | elpw | ⊢ ( 𝐹 ∈ 𝒫 ( V × V ) ↔ 𝐹 ⊆ ( V × V ) ) |
| 87 | df-rel | ⊢ ( Rel 𝐹 ↔ 𝐹 ⊆ ( V × V ) ) | |
| 88 | 86 87 | bitr4i | ⊢ ( 𝐹 ∈ 𝒫 ( V × V ) ↔ Rel 𝐹 ) |
| 89 | 1 | elfix | ⊢ ( 𝐹 ∈ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ↔ 𝐹 ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) 𝐹 ) |
| 90 | 1 1 | coep | ⊢ ( 𝐹 ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) 𝐹 ↔ ∃ 𝑝 ∈ 𝐹 𝐹 ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) 𝑝 ) |
| 91 | vex | ⊢ 𝑝 ∈ V | |
| 92 | 1 91 | coepr | ⊢ ( 𝐹 ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) 𝑝 ↔ ∃ 𝑞 ∈ 𝐹 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) |
| 93 | 92 | rexbii | ⊢ ( ∃ 𝑝 ∈ 𝐹 𝐹 ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) 𝑝 ↔ ∃ 𝑝 ∈ 𝐹 ∃ 𝑞 ∈ 𝐹 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) |
| 94 | 90 93 | bitri | ⊢ ( 𝐹 ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) 𝐹 ↔ ∃ 𝑝 ∈ 𝐹 ∃ 𝑞 ∈ 𝐹 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) |
| 95 | r2ex | ⊢ ( ∃ 𝑝 ∈ 𝐹 ∃ 𝑞 ∈ 𝐹 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ↔ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) | |
| 96 | 89 94 95 | 3bitri | ⊢ ( 𝐹 ∈ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ↔ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) |
| 97 | 96 | notbii | ⊢ ( ¬ 𝐹 ∈ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ↔ ¬ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) |
| 98 | 88 97 | anbi12i | ⊢ ( ( 𝐹 ∈ 𝒫 ( V × V ) ∧ ¬ 𝐹 ∈ Fix ( E ∘ ( ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) ∘ ◡ E ) ) ) ↔ ( Rel 𝐹 ∧ ¬ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) |
| 99 | 84 85 98 | 3bitri | ⊢ ( 𝐹 ∈ Funs ↔ ( Rel 𝐹 ∧ ¬ ∃ 𝑝 ∃ 𝑞 ( ( 𝑝 ∈ 𝐹 ∧ 𝑞 ∈ 𝐹 ) ∧ 𝑞 ( 1st ⊗ ( ( V ∖ I ) ∘ 2nd ) ) 𝑝 ) ) ) |
| 100 | 81 82 99 | 3bitr4ri | ⊢ ( 𝐹 ∈ Funs ↔ Fun 𝐹 ) |