This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a binary relation swaps arguments. Theorem 11 of Suppes p. 61. (Contributed by NM, 13-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelcnv.1 | ⊢ 𝐴 ∈ V | |
| opelcnv.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | brcnv | ⊢ ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | ⊢ 𝐵 ∈ V | |
| 3 | brcnvg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝐴 ◡ 𝑅 𝐵 ↔ 𝐵 𝑅 𝐴 ) |