This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a function with domain. Definition 6.15(1) of TakeutiZaring p. 27. For alternate definitions, see dffn2 , dffn3 , dffn4 , and dffn5 . (Contributed by NM, 1-Aug-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-fn | ⊢ ( 𝐴 Fn 𝐵 ↔ ( Fun 𝐴 ∧ dom 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cB | ⊢ 𝐵 | |
| 2 | 0 1 | wfn | ⊢ 𝐴 Fn 𝐵 |
| 3 | 0 | wfun | ⊢ Fun 𝐴 |
| 4 | 0 | cdm | ⊢ dom 𝐴 |
| 5 | 4 1 | wceq | ⊢ dom 𝐴 = 𝐵 |
| 6 | 3 5 | wa | ⊢ ( Fun 𝐴 ∧ dom 𝐴 = 𝐵 ) |
| 7 | 2 6 | wb | ⊢ ( 𝐴 Fn 𝐵 ↔ ( Fun 𝐴 ∧ dom 𝐴 = 𝐵 ) ) |