This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No successor is empty. (Contributed by NM, 3-Apr-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nsuceq0 | ⊢ suc 𝐴 ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noel | ⊢ ¬ 𝐴 ∈ ∅ | |
| 2 | sucidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ suc 𝐴 ) | |
| 3 | eleq2 | ⊢ ( suc 𝐴 = ∅ → ( 𝐴 ∈ suc 𝐴 ↔ 𝐴 ∈ ∅ ) ) | |
| 4 | 2 3 | syl5ibcom | ⊢ ( 𝐴 ∈ V → ( suc 𝐴 = ∅ → 𝐴 ∈ ∅ ) ) |
| 5 | 1 4 | mtoi | ⊢ ( 𝐴 ∈ V → ¬ suc 𝐴 = ∅ ) |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | eleq1 | ⊢ ( 𝐴 = ∅ → ( 𝐴 ∈ V ↔ ∅ ∈ V ) ) | |
| 8 | 6 7 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ∈ V ) |
| 9 | 8 | con3i | ⊢ ( ¬ 𝐴 ∈ V → ¬ 𝐴 = ∅ ) |
| 10 | sucprc | ⊢ ( ¬ 𝐴 ∈ V → suc 𝐴 = 𝐴 ) | |
| 11 | 10 | eqeq1d | ⊢ ( ¬ 𝐴 ∈ V → ( suc 𝐴 = ∅ ↔ 𝐴 = ∅ ) ) |
| 12 | 9 11 | mtbird | ⊢ ( ¬ 𝐴 ∈ V → ¬ suc 𝐴 = ∅ ) |
| 13 | 5 12 | pm2.61i | ⊢ ¬ suc 𝐴 = ∅ |
| 14 | 13 | neir | ⊢ suc 𝐴 ≠ ∅ |