This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canthp1lem2.1 | ⊢ ( 𝜑 → 1o ≺ 𝐴 ) | |
| canthp1lem2.2 | ⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) | ||
| canthp1lem2.3 | ⊢ ( 𝜑 → 𝐺 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | ||
| canthp1lem2.4 | ⊢ 𝐻 = ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) | ||
| canthp1lem2.5 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐻 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | ||
| canthp1lem2.6 | ⊢ 𝐵 = ∪ dom 𝑊 | ||
| Assertion | canthp1lem2 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthp1lem2.1 | ⊢ ( 𝜑 → 1o ≺ 𝐴 ) | |
| 2 | canthp1lem2.2 | ⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) | |
| 3 | canthp1lem2.3 | ⊢ ( 𝜑 → 𝐺 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | |
| 4 | canthp1lem2.4 | ⊢ 𝐻 = ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) | |
| 5 | canthp1lem2.5 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐻 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| 6 | canthp1lem2.6 | ⊢ 𝐵 = ∪ dom 𝑊 | |
| 7 | relsdom | ⊢ Rel ≺ | |
| 8 | 7 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 10 | 9 | pwexd | ⊢ ( 𝜑 → 𝒫 𝐴 ∈ V ) |
| 11 | f1oeng | ⊢ ( ( 𝒫 𝐴 ∈ V ∧ 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) | |
| 12 | 10 2 11 | syl2anc | ⊢ ( 𝜑 → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 13 | 12 | ensymd | ⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
| 14 | canth2g | ⊢ ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴 ) | |
| 15 | 9 14 | syl | ⊢ ( 𝜑 → 𝐴 ≺ 𝒫 𝐴 ) |
| 16 | sdomen2 | ⊢ ( 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) → ( 𝐴 ≺ 𝒫 𝐴 ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) ) | |
| 17 | 12 16 | syl | ⊢ ( 𝜑 → ( 𝐴 ≺ 𝒫 𝐴 ↔ 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) ) |
| 18 | 15 17 | mpbid | ⊢ ( 𝜑 → 𝐴 ≺ ( 𝐴 ⊔ 1o ) ) |
| 19 | sdomnen | ⊢ ( 𝐴 ≺ ( 𝐴 ⊔ 1o ) → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) | |
| 20 | 18 19 | syl | ⊢ ( 𝜑 → ¬ 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) |
| 21 | omelon | ⊢ ω ∈ On | |
| 22 | onenon | ⊢ ( ω ∈ On → ω ∈ dom card ) | |
| 23 | 21 22 | ax-mp | ⊢ ω ∈ dom card |
| 24 | dff1o3 | ⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ↔ ( 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ∧ Fun ◡ 𝐹 ) ) | |
| 25 | 24 | simprbi | ⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → Fun ◡ 𝐹 ) |
| 26 | 2 25 | syl | ⊢ ( 𝜑 → Fun ◡ 𝐹 ) |
| 27 | f1ofo | ⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) | |
| 28 | 2 27 | syl | ⊢ ( 𝜑 → 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) |
| 29 | f1ofn | ⊢ ( 𝐹 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → 𝐹 Fn 𝒫 𝐴 ) | |
| 30 | fnresdm | ⊢ ( 𝐹 Fn 𝒫 𝐴 → ( 𝐹 ↾ 𝒫 𝐴 ) = 𝐹 ) | |
| 31 | foeq1 | ⊢ ( ( 𝐹 ↾ 𝒫 𝐴 ) = 𝐹 → ( ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ↔ 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) ) | |
| 32 | 2 29 30 31 | 4syl | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ↔ 𝐹 : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) ) |
| 33 | 28 32 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ) |
| 34 | fvex | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ V | |
| 35 | f1osng | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐹 ‘ 𝐴 ) ∈ V ) → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) | |
| 36 | 9 34 35 | sylancl | ⊢ ( 𝜑 → { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
| 37 | 2 29 | syl | ⊢ ( 𝜑 → 𝐹 Fn 𝒫 𝐴 ) |
| 38 | pwidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴 ) | |
| 39 | 9 38 | syl | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 𝐴 ) |
| 40 | fnressn | ⊢ ( ( 𝐹 Fn 𝒫 𝐴 ∧ 𝐴 ∈ 𝒫 𝐴 ) → ( 𝐹 ↾ { 𝐴 } ) = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) | |
| 41 | 37 39 40 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) = { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } ) |
| 42 | 41 | f1oeq1d | ⊢ ( 𝜑 → ( ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ↔ { 〈 𝐴 , ( 𝐹 ‘ 𝐴 ) 〉 } : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 43 | 36 42 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
| 44 | f1ofo | ⊢ ( ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –1-1-onto→ { ( 𝐹 ‘ 𝐴 ) } → ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –onto→ { ( 𝐹 ‘ 𝐴 ) } ) | |
| 45 | 43 44 | syl | ⊢ ( 𝜑 → ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –onto→ { ( 𝐹 ‘ 𝐴 ) } ) |
| 46 | resdif | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝒫 𝐴 ) : 𝒫 𝐴 –onto→ ( 𝐴 ⊔ 1o ) ∧ ( 𝐹 ↾ { 𝐴 } ) : { 𝐴 } –onto→ { ( 𝐹 ‘ 𝐴 ) } ) → ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) ) | |
| 47 | 26 33 45 46 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) ) |
| 48 | f1oco | ⊢ ( ( 𝐺 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ∧ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝐹 ‘ 𝐴 ) } ) ) → ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) | |
| 49 | 3 47 48 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) |
| 50 | resco | ⊢ ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) = ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) | |
| 51 | f1oeq1 | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) = ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) ) | |
| 52 | 50 51 | ax-mp | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ↔ ( 𝐺 ∘ ( 𝐹 ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) |
| 53 | 49 52 | sylibr | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 ) |
| 54 | f1of | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) ⟶ 𝐴 ) | |
| 55 | 53 54 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) ⟶ 𝐴 ) |
| 56 | 0elpw | ⊢ ∅ ∈ 𝒫 𝐴 | |
| 57 | 56 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ 𝑥 = 𝐴 ) → ∅ ∈ 𝒫 𝐴 ) |
| 58 | sdom0 | ⊢ ¬ 1o ≺ ∅ | |
| 59 | breq2 | ⊢ ( ∅ = 𝐴 → ( 1o ≺ ∅ ↔ 1o ≺ 𝐴 ) ) | |
| 60 | 58 59 | mtbii | ⊢ ( ∅ = 𝐴 → ¬ 1o ≺ 𝐴 ) |
| 61 | 60 | necon2ai | ⊢ ( 1o ≺ 𝐴 → ∅ ≠ 𝐴 ) |
| 62 | 1 61 | syl | ⊢ ( 𝜑 → ∅ ≠ 𝐴 ) |
| 63 | 62 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ 𝑥 = 𝐴 ) → ∅ ≠ 𝐴 ) |
| 64 | eldifsn | ⊢ ( ∅ ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( ∅ ∈ 𝒫 𝐴 ∧ ∅ ≠ 𝐴 ) ) | |
| 65 | 57 63 64 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ 𝑥 = 𝐴 ) → ∅ ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
| 66 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ∈ 𝒫 𝐴 ) | |
| 67 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → ¬ 𝑥 = 𝐴 ) | |
| 68 | 67 | neqned | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ≠ 𝐴 ) |
| 69 | eldifsn | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( 𝑥 ∈ 𝒫 𝐴 ∧ 𝑥 ≠ 𝐴 ) ) | |
| 70 | 66 68 69 | sylanbrc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) ∧ ¬ 𝑥 = 𝐴 ) → 𝑥 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
| 71 | 65 70 | ifclda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝐴 ) → if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
| 72 | 71 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) : 𝒫 𝐴 ⟶ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
| 73 | 55 72 | fcod | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) : 𝒫 𝐴 ⟶ 𝐴 ) |
| 74 | 72 | frnd | ⊢ ( 𝜑 → ran ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ⊆ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
| 75 | cores | ⊢ ( ran ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ⊆ ( 𝒫 𝐴 ∖ { 𝐴 } ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) = ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ) | |
| 76 | 74 75 | syl | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) = ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ) |
| 77 | 76 4 | eqtr4di | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) = 𝐻 ) |
| 78 | 77 | feq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) : 𝒫 𝐴 ⟶ 𝐴 ↔ 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ) ) |
| 79 | 73 78 | mpbid | ⊢ ( 𝜑 → 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ) |
| 80 | inss1 | ⊢ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝒫 𝐴 | |
| 81 | 80 | a1i | ⊢ ( 𝜑 → ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝒫 𝐴 ) |
| 82 | eqid | ⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) | |
| 83 | 5 6 82 | canth4 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝒫 𝐴 ) → ( 𝐵 ⊆ 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐵 ∧ ( 𝐻 ‘ 𝐵 ) = ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
| 84 | 9 79 81 83 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐵 ∧ ( 𝐻 ‘ 𝐵 ) = ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
| 85 | 84 | simp1d | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐴 ) |
| 86 | 84 | simp2d | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐵 ) |
| 87 | 86 | pssned | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ≠ 𝐵 ) |
| 88 | 87 | necomd | ⊢ ( 𝜑 → 𝐵 ≠ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
| 89 | 84 | simp3d | ⊢ ( 𝜑 → ( 𝐻 ‘ 𝐵 ) = ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 90 | 4 | fveq1i | ⊢ ( 𝐻 ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ 𝐵 ) |
| 91 | 4 | fveq1i | ⊢ ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
| 92 | 89 90 91 | 3eqtr3g | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 93 | 9 85 | sselpwd | ⊢ ( 𝜑 → 𝐵 ∈ 𝒫 𝐴 ) |
| 94 | 72 93 | fvco3d | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ 𝐵 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) ) |
| 95 | 86 | pssssd | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊆ 𝐵 ) |
| 96 | 95 85 | sstrd | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊆ 𝐴 ) |
| 97 | 9 96 | sselpwd | ⊢ ( 𝜑 → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ) |
| 98 | 72 97 | fvco3d | ⊢ ( 𝜑 → ( ( ( 𝐺 ∘ 𝐹 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
| 99 | 92 94 98 | 3eqtr3d | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
| 100 | 99 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) ) |
| 101 | eqid | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) = ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) | |
| 102 | eqeq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐴 ↔ 𝐵 = 𝐴 ) ) | |
| 103 | id | ⊢ ( 𝑥 = 𝐵 → 𝑥 = 𝐵 ) | |
| 104 | 102 103 | ifbieq2d | ⊢ ( 𝑥 = 𝐵 → if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) = if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ) |
| 105 | ifcl | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ 𝐵 ∈ 𝒫 𝐴 ) → if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ∈ 𝒫 𝐴 ) | |
| 106 | 56 93 105 | sylancr | ⊢ ( 𝜑 → if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ∈ 𝒫 𝐴 ) |
| 107 | 101 104 93 106 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) = if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) ) |
| 108 | pssne | ⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ≠ 𝐴 ) | |
| 109 | 108 | neneqd | ⊢ ( 𝐵 ⊊ 𝐴 → ¬ 𝐵 = 𝐴 ) |
| 110 | 109 | iffalsed | ⊢ ( 𝐵 ⊊ 𝐴 → if ( 𝐵 = 𝐴 , ∅ , 𝐵 ) = 𝐵 ) |
| 111 | 107 110 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) = 𝐵 ) |
| 112 | 111 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ 𝐵 ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐵 ) ) |
| 113 | eqeq1 | ⊢ ( 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → ( 𝑥 = 𝐴 ↔ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 ) ) | |
| 114 | id | ⊢ ( 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) | |
| 115 | 113 114 | ifbieq2d | ⊢ ( 𝑥 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) = if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 116 | ifcl | ⊢ ( ( ∅ ∈ 𝒫 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ) → if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ∈ 𝒫 𝐴 ) | |
| 117 | 56 97 116 | sylancr | ⊢ ( 𝜑 → if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ∈ 𝒫 𝐴 ) |
| 118 | 101 115 97 117 | fvmptd3 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 119 | 118 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 120 | sspsstr | ⊢ ( ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊆ 𝐵 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐴 ) | |
| 121 | 95 120 | sylan | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ⊊ 𝐴 ) |
| 122 | 121 | pssned | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ≠ 𝐴 ) |
| 123 | 122 | neneqd | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 ) |
| 124 | 123 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → if ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) = 𝐴 , ∅ , ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
| 125 | 119 124 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
| 126 | 125 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ ( ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 127 | 100 112 126 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐵 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 128 | 93 108 | anim12i | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) |
| 129 | eldifsn | ⊢ ( 𝐵 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( 𝐵 ∈ 𝒫 𝐴 ∧ 𝐵 ≠ 𝐴 ) ) | |
| 130 | 128 129 | sylibr | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
| 131 | 130 | fvresd | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( 𝐺 ∘ 𝐹 ) ‘ 𝐵 ) ) |
| 132 | 97 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ) |
| 133 | eldifsn | ⊢ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ↔ ( ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ 𝒫 𝐴 ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ≠ 𝐴 ) ) | |
| 134 | 132 122 133 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) |
| 135 | 134 | fvresd | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) = ( ( 𝐺 ∘ 𝐹 ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 136 | 127 131 135 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 137 | f1of1 | ⊢ ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1-onto→ 𝐴 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ) | |
| 138 | 53 137 | syl | ⊢ ( 𝜑 → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ) |
| 139 | 138 | adantr | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ) |
| 140 | f1fveq | ⊢ ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) : ( 𝒫 𝐴 ∖ { 𝐴 } ) –1-1→ 𝐴 ∧ ( 𝐵 ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ∧ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ∈ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ↔ 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) | |
| 141 | 139 130 134 140 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → ( ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ 𝐵 ) = ( ( ( 𝐺 ∘ 𝐹 ) ↾ ( 𝒫 𝐴 ∖ { 𝐴 } ) ) ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ↔ 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 142 | 136 141 | mpbid | ⊢ ( ( 𝜑 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) |
| 143 | 142 | ex | ⊢ ( 𝜑 → ( 𝐵 ⊊ 𝐴 → 𝐵 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) ) ) |
| 144 | 143 | necon3ad | ⊢ ( 𝜑 → ( 𝐵 ≠ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐻 ‘ 𝐵 ) } ) → ¬ 𝐵 ⊊ 𝐴 ) ) |
| 145 | 88 144 | mpd | ⊢ ( 𝜑 → ¬ 𝐵 ⊊ 𝐴 ) |
| 146 | npss | ⊢ ( ¬ 𝐵 ⊊ 𝐴 ↔ ( 𝐵 ⊆ 𝐴 → 𝐵 = 𝐴 ) ) | |
| 147 | 145 146 | sylib | ⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐴 → 𝐵 = 𝐴 ) ) |
| 148 | 85 147 | mpd | ⊢ ( 𝜑 → 𝐵 = 𝐴 ) |
| 149 | eqid | ⊢ 𝐵 = 𝐵 | |
| 150 | eqid | ⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) | |
| 151 | 149 150 | pm3.2i | ⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
| 152 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) → 𝑥 ∈ 𝒫 𝐴 ) | |
| 153 | ffvelcdm | ⊢ ( ( 𝐻 : 𝒫 𝐴 ⟶ 𝐴 ∧ 𝑥 ∈ 𝒫 𝐴 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) | |
| 154 | 79 152 153 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
| 155 | 5 9 154 6 | fpwwe | ⊢ ( 𝜑 → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐻 ‘ 𝐵 ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 156 | 151 155 | mpbiri | ⊢ ( 𝜑 → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐻 ‘ 𝐵 ) ∈ 𝐵 ) ) |
| 157 | 156 | simpld | ⊢ ( 𝜑 → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
| 158 | 5 9 | fpwwelem | ⊢ ( 𝜑 → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
| 159 | 157 158 | mpbid | ⊢ ( 𝜑 → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐻 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) |
| 160 | 159 | simprld | ⊢ ( 𝜑 → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
| 161 | fvex | ⊢ ( 𝑊 ‘ 𝐵 ) ∈ V | |
| 162 | weeq1 | ⊢ ( 𝑟 = ( 𝑊 ‘ 𝐵 ) → ( 𝑟 We 𝐵 ↔ ( 𝑊 ‘ 𝐵 ) We 𝐵 ) ) | |
| 163 | 161 162 | spcev | ⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ∃ 𝑟 𝑟 We 𝐵 ) |
| 164 | 160 163 | syl | ⊢ ( 𝜑 → ∃ 𝑟 𝑟 We 𝐵 ) |
| 165 | ween | ⊢ ( 𝐵 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐵 ) | |
| 166 | 164 165 | sylibr | ⊢ ( 𝜑 → 𝐵 ∈ dom card ) |
| 167 | 148 166 | eqeltrrd | ⊢ ( 𝜑 → 𝐴 ∈ dom card ) |
| 168 | domtri2 | ⊢ ( ( ω ∈ dom card ∧ 𝐴 ∈ dom card ) → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) ) | |
| 169 | 23 167 168 | sylancr | ⊢ ( 𝜑 → ( ω ≼ 𝐴 ↔ ¬ 𝐴 ≺ ω ) ) |
| 170 | infdju1 | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) | |
| 171 | 169 170 | biimtrrdi | ⊢ ( 𝜑 → ( ¬ 𝐴 ≺ ω → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) ) |
| 172 | ensym | ⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝐴 → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) | |
| 173 | 171 172 | syl6 | ⊢ ( 𝜑 → ( ¬ 𝐴 ≺ ω → 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) ) |
| 174 | 20 173 | mt3d | ⊢ ( 𝜑 → 𝐴 ≺ ω ) |
| 175 | 2onn | ⊢ 2o ∈ ω | |
| 176 | nnsdom | ⊢ ( 2o ∈ ω → 2o ≺ ω ) | |
| 177 | 175 176 | ax-mp | ⊢ 2o ≺ ω |
| 178 | djufi | ⊢ ( ( 𝐴 ≺ ω ∧ 2o ≺ ω ) → ( 𝐴 ⊔ 2o ) ≺ ω ) | |
| 179 | 174 177 178 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ⊔ 2o ) ≺ ω ) |
| 180 | isfinite | ⊢ ( ( 𝐴 ⊔ 2o ) ∈ Fin ↔ ( 𝐴 ⊔ 2o ) ≺ ω ) | |
| 181 | 179 180 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ⊔ 2o ) ∈ Fin ) |
| 182 | sssucid | ⊢ 1o ⊆ suc 1o | |
| 183 | df-2o | ⊢ 2o = suc 1o | |
| 184 | 182 183 | sseqtrri | ⊢ 1o ⊆ 2o |
| 185 | xpss2 | ⊢ ( 1o ⊆ 2o → ( { 1o } × 1o ) ⊆ ( { 1o } × 2o ) ) | |
| 186 | 184 185 | ax-mp | ⊢ ( { 1o } × 1o ) ⊆ ( { 1o } × 2o ) |
| 187 | unss2 | ⊢ ( ( { 1o } × 1o ) ⊆ ( { 1o } × 2o ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) | |
| 188 | 186 187 | mp1i | ⊢ ( 𝜑 → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
| 189 | ssun2 | ⊢ ( { 1o } × 2o ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) | |
| 190 | 1oex | ⊢ 1o ∈ V | |
| 191 | 190 | snid | ⊢ 1o ∈ { 1o } |
| 192 | 190 | sucid | ⊢ 1o ∈ suc 1o |
| 193 | 192 183 | eleqtrri | ⊢ 1o ∈ 2o |
| 194 | opelxpi | ⊢ ( ( 1o ∈ { 1o } ∧ 1o ∈ 2o ) → 〈 1o , 1o 〉 ∈ ( { 1o } × 2o ) ) | |
| 195 | 191 193 194 | mp2an | ⊢ 〈 1o , 1o 〉 ∈ ( { 1o } × 2o ) |
| 196 | 189 195 | sselii | ⊢ 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) |
| 197 | 1n0 | ⊢ 1o ≠ ∅ | |
| 198 | 197 | neii | ⊢ ¬ 1o = ∅ |
| 199 | opelxp1 | ⊢ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) → 1o ∈ { ∅ } ) | |
| 200 | elsni | ⊢ ( 1o ∈ { ∅ } → 1o = ∅ ) | |
| 201 | 199 200 | syl | ⊢ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) → 1o = ∅ ) |
| 202 | 198 201 | mto | ⊢ ¬ 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) |
| 203 | 1onn | ⊢ 1o ∈ ω | |
| 204 | nnord | ⊢ ( 1o ∈ ω → Ord 1o ) | |
| 205 | ordirr | ⊢ ( Ord 1o → ¬ 1o ∈ 1o ) | |
| 206 | 203 204 205 | mp2b | ⊢ ¬ 1o ∈ 1o |
| 207 | opelxp2 | ⊢ ( 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) → 1o ∈ 1o ) | |
| 208 | 206 207 | mto | ⊢ ¬ 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) |
| 209 | 202 208 | pm3.2ni | ⊢ ¬ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) ∨ 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) ) |
| 210 | elun | ⊢ ( 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ↔ ( 〈 1o , 1o 〉 ∈ ( { ∅ } × 𝐴 ) ∨ 〈 1o , 1o 〉 ∈ ( { 1o } × 1o ) ) ) | |
| 211 | 209 210 | mtbir | ⊢ ¬ 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) |
| 212 | ssnelpss | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) → ( ( 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ∧ ¬ 〈 1o , 1o 〉 ∈ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) ) | |
| 213 | 196 211 212 | mp2ani | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊆ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
| 214 | 188 213 | syl | ⊢ ( 𝜑 → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
| 215 | df-dju | ⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) | |
| 216 | df-dju | ⊢ ( 𝐴 ⊔ 2o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) | |
| 217 | 215 216 | psseq12i | ⊢ ( ( 𝐴 ⊔ 1o ) ⊊ ( 𝐴 ⊔ 2o ) ↔ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ⊊ ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 2o ) ) ) |
| 218 | 214 217 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ⊊ ( 𝐴 ⊔ 2o ) ) |
| 219 | php3 | ⊢ ( ( ( 𝐴 ⊔ 2o ) ∈ Fin ∧ ( 𝐴 ⊔ 1o ) ⊊ ( 𝐴 ⊔ 2o ) ) → ( 𝐴 ⊔ 1o ) ≺ ( 𝐴 ⊔ 2o ) ) | |
| 220 | 181 218 219 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ≺ ( 𝐴 ⊔ 2o ) ) |
| 221 | canthp1lem1 | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) | |
| 222 | 1 221 | syl | ⊢ ( 𝜑 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) |
| 223 | sdomdomtr | ⊢ ( ( ( 𝐴 ⊔ 1o ) ≺ ( 𝐴 ⊔ 2o ) ∧ ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) | |
| 224 | 220 222 223 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) |
| 225 | sdomnen | ⊢ ( ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 → ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) | |
| 226 | 224 225 | syl | ⊢ ( 𝜑 → ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
| 227 | 13 226 | pm2.65i | ⊢ ¬ 𝜑 |