This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite set is equinumerous to itself added with one. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | infdju1 | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difun2 | ⊢ ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) | |
| 2 | df-dju | ⊢ ( 𝐴 ⊔ 1o ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) | |
| 3 | df1o2 | ⊢ 1o = { ∅ } | |
| 4 | 3 | xpeq2i | ⊢ ( { 1o } × 1o ) = ( { 1o } × { ∅ } ) |
| 5 | 1oex | ⊢ 1o ∈ V | |
| 6 | 0ex | ⊢ ∅ ∈ V | |
| 7 | 5 6 | xpsn | ⊢ ( { 1o } × { ∅ } ) = { 〈 1o , ∅ 〉 } |
| 8 | 4 7 | eqtr2i | ⊢ { 〈 1o , ∅ 〉 } = ( { 1o } × 1o ) |
| 9 | 2 8 | difeq12i | ⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 1o ) ) ∖ ( { 1o } × 1o ) ) |
| 10 | xp01disjl | ⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ | |
| 11 | disj3 | ⊢ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 1o ) ) = ∅ ↔ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) ) | |
| 12 | 10 11 | mpbi | ⊢ ( { ∅ } × 𝐴 ) = ( ( { ∅ } × 𝐴 ) ∖ ( { 1o } × 1o ) ) |
| 13 | 1 9 12 | 3eqtr4i | ⊢ ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) = ( { ∅ } × 𝐴 ) |
| 14 | reldom | ⊢ Rel ≼ | |
| 15 | 14 | brrelex2i | ⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
| 16 | 1on | ⊢ 1o ∈ On | |
| 17 | djudoml | ⊢ ( ( 𝐴 ∈ V ∧ 1o ∈ On ) → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( ω ≼ 𝐴 → 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) |
| 19 | domtr | ⊢ ( ( ω ≼ 𝐴 ∧ 𝐴 ≼ ( 𝐴 ⊔ 1o ) ) → ω ≼ ( 𝐴 ⊔ 1o ) ) | |
| 20 | 18 19 | mpdan | ⊢ ( ω ≼ 𝐴 → ω ≼ ( 𝐴 ⊔ 1o ) ) |
| 21 | infdifsn | ⊢ ( ω ≼ ( 𝐴 ⊔ 1o ) → ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ ( 𝐴 ⊔ 1o ) ) | |
| 22 | 20 21 | syl | ⊢ ( ω ≼ 𝐴 → ( ( 𝐴 ⊔ 1o ) ∖ { 〈 1o , ∅ 〉 } ) ≈ ( 𝐴 ⊔ 1o ) ) |
| 23 | 13 22 | eqbrtrrid | ⊢ ( ω ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≈ ( 𝐴 ⊔ 1o ) ) |
| 24 | 23 | ensymd | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ ( { ∅ } × 𝐴 ) ) |
| 25 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 26 | 6 15 25 | sylancr | ⊢ ( ω ≼ 𝐴 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 27 | entr | ⊢ ( ( ( 𝐴 ⊔ 1o ) ≈ ( { ∅ } × 𝐴 ) ∧ ( { ∅ } × 𝐴 ) ≈ 𝐴 ) → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) | |
| 28 | 24 26 27 | syl2anc | ⊢ ( ω ≼ 𝐴 → ( 𝐴 ⊔ 1o ) ≈ 𝐴 ) |