This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Corollary of Pigeonhole Principle. If A is finite and B is a proper subset of A , the B is strictly less numerous than A . Stronger version of Corollary 6C of Enderton p. 135. (Contributed by NM, 22-Aug-2008) Avoid ax-pow . (Revised by BTernaryTau, 26-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | php3 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) | |
| 2 | bren | ⊢ ( 𝐴 ≈ 𝑥 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 ) | |
| 3 | pssss | ⊢ ( 𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴 ) | |
| 4 | imass2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝐵 ⊊ 𝐴 → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ) |
| 7 | pssnel | ⊢ ( 𝐵 ⊊ 𝐴 → ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) | |
| 8 | eldif | ⊢ ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) | |
| 9 | f1ofn | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 Fn 𝐴 ) | |
| 10 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 11 | fnfvima | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ∧ 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 12 | 11 | 3expia | ⊢ ( ( 𝑓 Fn 𝐴 ∧ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 ) → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 13 | 9 10 12 | sylancl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ) ) |
| 14 | dff1o3 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ↔ ( 𝑓 : 𝐴 –onto→ 𝑥 ∧ Fun ◡ 𝑓 ) ) | |
| 15 | imadif | ⊢ ( Fun ◡ 𝑓 → ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) | |
| 16 | 14 15 | simplbiim | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑓 ‘ 𝑦 ) ∈ ( 𝑓 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) ) |
| 18 | 13 17 | sylibd | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) ) ) |
| 19 | n0i | ⊢ ( ( 𝑓 ‘ 𝑦 ) ∈ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) | |
| 20 | 18 19 | syl6 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑦 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
| 21 | 8 20 | biimtrrid | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
| 22 | 21 | exlimdv | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) ) |
| 23 | 22 | imp | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ ∃ 𝑦 ( 𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵 ) ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
| 24 | 7 23 | sylan2 | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) |
| 25 | ssdif0 | ⊢ ( ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ↔ ( ( 𝑓 “ 𝐴 ) ∖ ( 𝑓 “ 𝐵 ) ) = ∅ ) | |
| 26 | 24 25 | sylnibr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ¬ ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ) |
| 27 | dfpss3 | ⊢ ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( ( 𝑓 “ 𝐵 ) ⊆ ( 𝑓 “ 𝐴 ) ∧ ¬ ( 𝑓 “ 𝐴 ) ⊆ ( 𝑓 “ 𝐵 ) ) ) | |
| 28 | 6 26 27 | sylanbrc | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ) |
| 29 | imadmrn | ⊢ ( 𝑓 “ dom 𝑓 ) = ran 𝑓 | |
| 30 | f1odm | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → dom 𝑓 = 𝐴 ) | |
| 31 | 30 | imaeq2d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ dom 𝑓 ) = ( 𝑓 “ 𝐴 ) ) |
| 32 | f1ofo | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 : 𝐴 –onto→ 𝑥 ) | |
| 33 | forn | ⊢ ( 𝑓 : 𝐴 –onto→ 𝑥 → ran 𝑓 = 𝑥 ) | |
| 34 | 32 33 | syl | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ran 𝑓 = 𝑥 ) |
| 35 | 29 31 34 | 3eqtr3a | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑓 “ 𝐴 ) = 𝑥 ) |
| 36 | 35 | psseq2d | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) ) |
| 37 | 36 | adantr | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( ( 𝑓 “ 𝐵 ) ⊊ ( 𝑓 “ 𝐴 ) ↔ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) ) |
| 38 | 28 37 | mpbid | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) |
| 39 | php2 | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 “ 𝐵 ) ⊊ 𝑥 ) → ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) | |
| 40 | 38 39 | sylan2 | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) |
| 41 | nnfi | ⊢ ( 𝑥 ∈ ω → 𝑥 ∈ Fin ) | |
| 42 | f1of1 | ⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → 𝑓 : 𝐴 –1-1→ 𝑥 ) | |
| 43 | f1ores | ⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) | |
| 44 | 42 3 43 | syl2an | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
| 45 | vex | ⊢ 𝑓 ∈ V | |
| 46 | 45 | resex | ⊢ ( 𝑓 ↾ 𝐵 ) ∈ V |
| 47 | f1oeq1 | ⊢ ( 𝑦 = ( 𝑓 ↾ 𝐵 ) → ( 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ↔ ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) ) | |
| 48 | 46 47 | spcev | ⊢ ( ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) → ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) |
| 49 | bren | ⊢ ( 𝐵 ≈ ( 𝑓 “ 𝐵 ) ↔ ∃ 𝑦 𝑦 : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) ) | |
| 50 | 48 49 | sylibr | ⊢ ( ( 𝑓 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑓 “ 𝐵 ) → 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) |
| 51 | 44 50 | syl | ⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) |
| 52 | endom | ⊢ ( 𝐵 ≈ ( 𝑓 “ 𝐵 ) → 𝐵 ≼ ( 𝑓 “ 𝐵 ) ) | |
| 53 | sdomdom | ⊢ ( ( 𝑓 “ 𝐵 ) ≺ 𝑥 → ( 𝑓 “ 𝐵 ) ≼ 𝑥 ) | |
| 54 | domfi | ⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑓 “ 𝐵 ) ≼ 𝑥 ) → ( 𝑓 “ 𝐵 ) ∈ Fin ) | |
| 55 | 53 54 | sylan2 | ⊢ ( ( 𝑥 ∈ Fin ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → ( 𝑓 “ 𝐵 ) ∈ Fin ) |
| 56 | 55 | 3adant2 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → ( 𝑓 “ 𝐵 ) ∈ Fin ) |
| 57 | domfi | ⊢ ( ( ( 𝑓 “ 𝐵 ) ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ) → 𝐵 ∈ Fin ) | |
| 58 | 57 | 3adant3 | ⊢ ( ( ( 𝑓 “ 𝐵 ) ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ∈ Fin ) |
| 59 | domsdomtrfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) | |
| 60 | 58 59 | syld3an1 | ⊢ ( ( ( 𝑓 “ 𝐵 ) ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) |
| 61 | 56 60 | syld3an1 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) |
| 62 | 52 61 | syl3an2 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≈ ( 𝑓 “ 𝐵 ) ∧ ( 𝑓 “ 𝐵 ) ≺ 𝑥 ) → 𝐵 ≺ 𝑥 ) |
| 63 | 62 | 3expia | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≈ ( 𝑓 “ 𝐵 ) ) → ( ( 𝑓 “ 𝐵 ) ≺ 𝑥 → 𝐵 ≺ 𝑥 ) ) |
| 64 | 41 51 63 | syl2an | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → ( ( 𝑓 “ 𝐵 ) ≺ 𝑥 → 𝐵 ≺ 𝑥 ) ) |
| 65 | 40 64 | mpd | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊊ 𝐴 ) ) → 𝐵 ≺ 𝑥 ) |
| 66 | 65 | exp32 | ⊢ ( 𝑥 ∈ ω → ( 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥 ) ) ) |
| 67 | 66 | exlimdv | ⊢ ( 𝑥 ∈ ω → ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥 ) ) ) |
| 68 | 2 67 | biimtrid | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝑥 ) ) ) |
| 69 | ensymfib | ⊢ ( 𝑥 ∈ Fin → ( 𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥 ) ) | |
| 70 | 69 | adantr | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ) → ( 𝑥 ≈ 𝐴 ↔ 𝐴 ≈ 𝑥 ) ) |
| 71 | 70 | biimp3ar | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥 ) → 𝑥 ≈ 𝐴 ) |
| 72 | endom | ⊢ ( 𝑥 ≈ 𝐴 → 𝑥 ≼ 𝐴 ) | |
| 73 | sdomdom | ⊢ ( 𝐵 ≺ 𝑥 → 𝐵 ≼ 𝑥 ) | |
| 74 | domfi | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≼ 𝑥 ) → 𝐵 ∈ Fin ) | |
| 75 | 73 74 | sylan2 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ) → 𝐵 ∈ Fin ) |
| 76 | 75 | 3adant3 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → 𝐵 ∈ Fin ) |
| 77 | sdomdomtrfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → 𝐵 ≺ 𝐴 ) | |
| 78 | 76 77 | syld3an1 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≼ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
| 79 | 72 78 | syl3an3 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝑥 ≈ 𝐴 ) → 𝐵 ≺ 𝐴 ) |
| 80 | 71 79 | syld3an3 | ⊢ ( ( 𝑥 ∈ Fin ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥 ) → 𝐵 ≺ 𝐴 ) |
| 81 | 41 80 | syl3an1 | ⊢ ( ( 𝑥 ∈ ω ∧ 𝐵 ≺ 𝑥 ∧ 𝐴 ≈ 𝑥 ) → 𝐵 ≺ 𝐴 ) |
| 82 | 81 | 3com23 | ⊢ ( ( 𝑥 ∈ ω ∧ 𝐴 ≈ 𝑥 ∧ 𝐵 ≺ 𝑥 ) → 𝐵 ≺ 𝐴 ) |
| 83 | 82 | 3exp | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ≺ 𝑥 → 𝐵 ≺ 𝐴 ) ) ) |
| 84 | 68 83 | syldd | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) ) |
| 85 | 84 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
| 86 | 1 85 | sylbi | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊊ 𝐴 → 𝐵 ≺ 𝐴 ) ) |
| 87 | 86 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴 ) → 𝐵 ≺ 𝐴 ) |