This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The disjoint union of two finite sets is finite. (Contributed by NM, 22-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djufi | ⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ⊔ 𝐵 ) ≺ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 2 | 0elon | ⊢ ∅ ∈ On | |
| 3 | relsdom | ⊢ Rel ≺ | |
| 4 | 3 | brrelex1i | ⊢ ( 𝐴 ≺ ω → 𝐴 ∈ V ) |
| 5 | xpsnen2g | ⊢ ( ( ∅ ∈ On ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 6 | 2 4 5 | sylancr | ⊢ ( 𝐴 ≺ ω → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 7 | sdomen1 | ⊢ ( ( { ∅ } × 𝐴 ) ≈ 𝐴 → ( ( { ∅ } × 𝐴 ) ≺ ω ↔ 𝐴 ≺ ω ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝐴 ≺ ω → ( ( { ∅ } × 𝐴 ) ≺ ω ↔ 𝐴 ≺ ω ) ) |
| 9 | 8 | ibir | ⊢ ( 𝐴 ≺ ω → ( { ∅ } × 𝐴 ) ≺ ω ) |
| 10 | 1on | ⊢ 1o ∈ On | |
| 11 | 3 | brrelex1i | ⊢ ( 𝐵 ≺ ω → 𝐵 ∈ V ) |
| 12 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ V ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 𝐵 ≺ ω → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
| 14 | sdomen1 | ⊢ ( ( { 1o } × 𝐵 ) ≈ 𝐵 → ( ( { 1o } × 𝐵 ) ≺ ω ↔ 𝐵 ≺ ω ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝐵 ≺ ω → ( ( { 1o } × 𝐵 ) ≺ ω ↔ 𝐵 ≺ ω ) ) |
| 16 | 15 | ibir | ⊢ ( 𝐵 ≺ ω → ( { 1o } × 𝐵 ) ≺ ω ) |
| 17 | unfi2 | ⊢ ( ( ( { ∅ } × 𝐴 ) ≺ ω ∧ ( { 1o } × 𝐵 ) ≺ ω ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≺ ω ) | |
| 18 | 9 16 17 | syl2an | ⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≺ ω ) |
| 19 | 1 18 | eqbrtrid | ⊢ ( ( 𝐴 ≺ ω ∧ 𝐵 ≺ ω ) → ( 𝐴 ⊔ 𝐵 ) ≺ ω ) |