This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An "effective" form of Cantor's theorem canth . For any function F from the powerset of A to A , there are two definable sets B and C which witness non-injectivity of F . Corollary 1.3 of KanamoriPincus p. 416. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canth4.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| canth4.2 | ⊢ 𝐵 = ∪ dom 𝑊 | ||
| canth4.3 | ⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) | ||
| Assertion | canth4 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canth4.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| 2 | canth4.2 | ⊢ 𝐵 = ∪ dom 𝑊 | |
| 3 | canth4.3 | ⊢ 𝐶 = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) | |
| 4 | eqid | ⊢ 𝐵 = 𝐵 | |
| 5 | eqid | ⊢ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) | |
| 6 | 4 5 | pm3.2i | ⊢ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) |
| 7 | simp1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → 𝐴 ∈ 𝑉 ) | |
| 8 | simpl2 | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → 𝐹 : 𝐷 ⟶ 𝐴 ) | |
| 9 | simp3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) | |
| 10 | 9 | sselda | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → 𝑥 ∈ 𝐷 ) |
| 11 | 8 10 | ffvelcdmd | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) ∧ 𝑥 ∈ ( 𝒫 𝐴 ∩ dom card ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐴 ) |
| 12 | 1 7 11 2 | fpwwe | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) ↔ ( 𝐵 = 𝐵 ∧ ( 𝑊 ‘ 𝐵 ) = ( 𝑊 ‘ 𝐵 ) ) ) ) |
| 13 | 6 12 | mpbiri | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) ) |
| 14 | 13 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ) |
| 15 | 1 7 | fpwwelem | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐵 𝑊 ( 𝑊 ‘ 𝐵 ) ↔ ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
| 16 | 14 15 | mpbid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ∧ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) ) |
| 17 | 16 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐵 ⊆ 𝐴 ∧ ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) ) |
| 18 | 17 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → 𝐵 ⊆ 𝐴 ) |
| 19 | cnvimass | ⊢ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) ⊆ dom ( 𝑊 ‘ 𝐵 ) | |
| 20 | 3 19 | eqsstri | ⊢ 𝐶 ⊆ dom ( 𝑊 ‘ 𝐵 ) |
| 21 | 17 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 22 | dmss | ⊢ ( ( 𝑊 ‘ 𝐵 ) ⊆ ( 𝐵 × 𝐵 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) | |
| 23 | 21 22 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ dom ( 𝐵 × 𝐵 ) ) |
| 24 | dmxpid | ⊢ dom ( 𝐵 × 𝐵 ) = 𝐵 | |
| 25 | 23 24 | sseqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → dom ( 𝑊 ‘ 𝐵 ) ⊆ 𝐵 ) |
| 26 | 20 25 | sstrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → 𝐶 ⊆ 𝐵 ) |
| 27 | 13 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) |
| 28 | 16 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( ( 𝑊 ‘ 𝐵 ) We 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) ) |
| 29 | 28 | simpld | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝑊 ‘ 𝐵 ) We 𝐵 ) |
| 30 | weso | ⊢ ( ( 𝑊 ‘ 𝐵 ) We 𝐵 → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝑊 ‘ 𝐵 ) Or 𝐵 ) |
| 32 | sonr | ⊢ ( ( ( 𝑊 ‘ 𝐵 ) Or 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) ∈ 𝐵 ) → ¬ ( 𝐹 ‘ 𝐵 ) ( 𝑊 ‘ 𝐵 ) ( 𝐹 ‘ 𝐵 ) ) | |
| 33 | 31 27 32 | syl2anc | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ¬ ( 𝐹 ‘ 𝐵 ) ( 𝑊 ‘ 𝐵 ) ( 𝐹 ‘ 𝐵 ) ) |
| 34 | 3 | eleq2i | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) ) |
| 35 | fvex | ⊢ ( 𝐹 ‘ 𝐵 ) ∈ V | |
| 36 | 35 | eliniseg | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ V → ( ( 𝐹 ‘ 𝐵 ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) ↔ ( 𝐹 ‘ 𝐵 ) ( 𝑊 ‘ 𝐵 ) ( 𝐹 ‘ 𝐵 ) ) ) |
| 37 | 35 36 | ax-mp | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) ↔ ( 𝐹 ‘ 𝐵 ) ( 𝑊 ‘ 𝐵 ) ( 𝐹 ‘ 𝐵 ) ) |
| 38 | 34 37 | bitri | ⊢ ( ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ↔ ( 𝐹 ‘ 𝐵 ) ( 𝑊 ‘ 𝐵 ) ( 𝐹 ‘ 𝐵 ) ) |
| 39 | 33 38 | sylnibr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ¬ ( 𝐹 ‘ 𝐵 ) ∈ 𝐶 ) |
| 40 | 26 27 39 | ssnelpssd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → 𝐶 ⊊ 𝐵 ) |
| 41 | sneq | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → { 𝑦 } = { ( 𝐹 ‘ 𝐵 ) } ) | |
| 42 | 41 | imaeq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) = ( ◡ ( 𝑊 ‘ 𝐵 ) “ { ( 𝐹 ‘ 𝐵 ) } ) ) |
| 43 | 42 3 | eqtr4di | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) = 𝐶 ) |
| 44 | 43 | fveq2d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = ( 𝐹 ‘ 𝐶 ) ) |
| 45 | id | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → 𝑦 = ( 𝐹 ‘ 𝐵 ) ) | |
| 46 | 44 45 | eqeq12d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝐵 ) → ( ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ↔ ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐵 ) ) ) |
| 47 | 28 | simprd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ∀ 𝑦 ∈ 𝐵 ( 𝐹 ‘ ( ◡ ( 𝑊 ‘ 𝐵 ) “ { 𝑦 } ) ) = 𝑦 ) |
| 48 | 46 47 27 | rspcdva | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐹 ‘ 𝐶 ) = ( 𝐹 ‘ 𝐵 ) ) |
| 49 | 48 | eqcomd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 50 | 18 40 49 | 3jca | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐹 : 𝐷 ⟶ 𝐴 ∧ ( 𝒫 𝐴 ∩ dom card ) ⊆ 𝐷 ) → ( 𝐵 ⊆ 𝐴 ∧ 𝐶 ⊊ 𝐵 ∧ ( 𝐹 ‘ 𝐵 ) = ( 𝐹 ‘ 𝐶 ) ) ) |