This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem sdomnen

Description: Strict dominance implies non-equinumerosity. (Contributed by NM, 10-Jun-1998)

Ref Expression
Assertion sdomnen ( 𝐴𝐵 → ¬ 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 brsdom ( 𝐴𝐵 ↔ ( 𝐴𝐵 ∧ ¬ 𝐴𝐵 ) )
2 1 simprbi ( 𝐴𝐵 → ¬ 𝐴𝐵 )