This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is numerable iff it can be well-ordered. (Contributed by Mario Carneiro, 5-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ween | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfac8b | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑟 𝑟 We 𝐴 ) | |
| 2 | weso | ⊢ ( 𝑟 We 𝐴 → 𝑟 Or 𝐴 ) | |
| 3 | vex | ⊢ 𝑟 ∈ V | |
| 4 | soex | ⊢ ( ( 𝑟 Or 𝐴 ∧ 𝑟 ∈ V ) → 𝐴 ∈ V ) | |
| 5 | 2 3 4 | sylancl | ⊢ ( 𝑟 We 𝐴 → 𝐴 ∈ V ) |
| 6 | 5 | exlimiv | ⊢ ( ∃ 𝑟 𝑟 We 𝐴 → 𝐴 ∈ V ) |
| 7 | unipw | ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 8 | weeq2 | ⊢ ( ∪ 𝒫 𝐴 = 𝐴 → ( 𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴 ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( 𝑟 We ∪ 𝒫 𝐴 ↔ 𝑟 We 𝐴 ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 ↔ ∃ 𝑟 𝑟 We 𝐴 ) |
| 11 | 10 | biimpri | ⊢ ( ∃ 𝑟 𝑟 We 𝐴 → ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 ) |
| 12 | pwexg | ⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) | |
| 13 | dfac8c | ⊢ ( 𝒫 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) ) ) |
| 15 | dfac8a | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑓 ∀ 𝑥 ∈ 𝒫 𝐴 ( 𝑥 ≠ ∅ → ( 𝑓 ‘ 𝑥 ) ∈ 𝑥 ) → 𝐴 ∈ dom card ) ) | |
| 16 | 14 15 | syld | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑟 𝑟 We ∪ 𝒫 𝐴 → 𝐴 ∈ dom card ) ) |
| 17 | 6 11 16 | sylc | ⊢ ( ∃ 𝑟 𝑟 We 𝐴 → 𝐴 ∈ dom card ) |
| 18 | 1 17 | impbii | ⊢ ( 𝐴 ∈ dom card ↔ ∃ 𝑟 𝑟 We 𝐴 ) |