This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Definition df-2o

Description: Define the ordinal number 2. Lemma 3.17 of Schloeder p. 10. (Contributed by NM, 18-Feb-2004)

Ref Expression
Assertion df-2o 2o = suc 1o

Detailed syntax breakdown

Step Hyp Ref Expression
0 c2o 2o
1 c1o 1o
2 1 csuc suc 1o
3 0 2 wceq 2o = suc 1o