This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthp1lem1 | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sdom2 | ⊢ 1o ≺ 2o | |
| 2 | djuxpdom | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 2o ) → ( 𝐴 ⊔ 2o ) ≼ ( 𝐴 × 2o ) ) | |
| 3 | 1 2 | mpan2 | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 2o ) ≼ ( 𝐴 × 2o ) ) |
| 4 | sdom0 | ⊢ ¬ 1o ≺ ∅ | |
| 5 | breq2 | ⊢ ( 𝐴 = ∅ → ( 1o ≺ 𝐴 ↔ 1o ≺ ∅ ) ) | |
| 6 | 4 5 | mtbiri | ⊢ ( 𝐴 = ∅ → ¬ 1o ≺ 𝐴 ) |
| 7 | 6 | con2i | ⊢ ( 1o ≺ 𝐴 → ¬ 𝐴 = ∅ ) |
| 8 | neq0 | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) | |
| 9 | 7 8 | sylib | ⊢ ( 1o ≺ 𝐴 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
| 10 | relsdom | ⊢ Rel ≺ | |
| 11 | 10 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 12 | 11 | adantr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ∈ V ) |
| 13 | enrefg | ⊢ ( 𝐴 ∈ V → 𝐴 ≈ 𝐴 ) | |
| 14 | 12 13 | syl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ≈ 𝐴 ) |
| 15 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 16 | pwpw0 | ⊢ 𝒫 { ∅ } = { ∅ , { ∅ } } | |
| 17 | 15 16 | eqtr4i | ⊢ 2o = 𝒫 { ∅ } |
| 18 | 0ex | ⊢ ∅ ∈ V | |
| 19 | vex | ⊢ 𝑥 ∈ V | |
| 20 | en2sn | ⊢ ( ( ∅ ∈ V ∧ 𝑥 ∈ V ) → { ∅ } ≈ { 𝑥 } ) | |
| 21 | 18 19 20 | mp2an | ⊢ { ∅ } ≈ { 𝑥 } |
| 22 | pwen | ⊢ ( { ∅ } ≈ { 𝑥 } → 𝒫 { ∅ } ≈ 𝒫 { 𝑥 } ) | |
| 23 | 21 22 | ax-mp | ⊢ 𝒫 { ∅ } ≈ 𝒫 { 𝑥 } |
| 24 | 17 23 | eqbrtri | ⊢ 2o ≈ 𝒫 { 𝑥 } |
| 25 | xpen | ⊢ ( ( 𝐴 ≈ 𝐴 ∧ 2o ≈ 𝒫 { 𝑥 } ) → ( 𝐴 × 2o ) ≈ ( 𝐴 × 𝒫 { 𝑥 } ) ) | |
| 26 | 14 24 25 | sylancl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 × 2o ) ≈ ( 𝐴 × 𝒫 { 𝑥 } ) ) |
| 27 | vsnex | ⊢ { 𝑥 } ∈ V | |
| 28 | 27 | pwex | ⊢ 𝒫 { 𝑥 } ∈ V |
| 29 | uncom | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = ( { 𝑥 } ∪ ( 𝐴 ∖ { 𝑥 } ) ) | |
| 30 | simpr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 31 | 30 | snssd | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ⊆ 𝐴 ) |
| 32 | undif | ⊢ ( { 𝑥 } ⊆ 𝐴 ↔ ( { 𝑥 } ∪ ( 𝐴 ∖ { 𝑥 } ) ) = 𝐴 ) | |
| 33 | 31 32 | sylib | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( { 𝑥 } ∪ ( 𝐴 ∖ { 𝑥 } ) ) = 𝐴 ) |
| 34 | 29 33 | eqtrid | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) = 𝐴 ) |
| 35 | 12 | difexd | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 ∖ { 𝑥 } ) ∈ V ) |
| 36 | canth2g | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∈ V → ( 𝐴 ∖ { 𝑥 } ) ≺ 𝒫 ( 𝐴 ∖ { 𝑥 } ) ) | |
| 37 | domunsn | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ≺ 𝒫 ( 𝐴 ∖ { 𝑥 } ) → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ≼ 𝒫 ( 𝐴 ∖ { 𝑥 } ) ) | |
| 38 | 35 36 37 | 3syl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ≼ 𝒫 ( 𝐴 ∖ { 𝑥 } ) ) |
| 39 | 34 38 | eqbrtrrd | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝐴 ≼ 𝒫 ( 𝐴 ∖ { 𝑥 } ) ) |
| 40 | xpdom1g | ⊢ ( ( 𝒫 { 𝑥 } ∈ V ∧ 𝐴 ≼ 𝒫 ( 𝐴 ∖ { 𝑥 } ) ) → ( 𝐴 × 𝒫 { 𝑥 } ) ≼ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ) | |
| 41 | 28 39 40 | sylancr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 × 𝒫 { 𝑥 } ) ≼ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ) |
| 42 | endomtr | ⊢ ( ( ( 𝐴 × 2o ) ≈ ( 𝐴 × 𝒫 { 𝑥 } ) ∧ ( 𝐴 × 𝒫 { 𝑥 } ) ≼ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ) → ( 𝐴 × 2o ) ≼ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ) | |
| 43 | 26 41 42 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 × 2o ) ≼ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ) |
| 44 | pwdjuen | ⊢ ( ( ( 𝐴 ∖ { 𝑥 } ) ∈ V ∧ { 𝑥 } ∈ V ) → 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ) | |
| 45 | 35 27 44 | sylancl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ) |
| 46 | 45 | ensymd | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ≈ 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ) |
| 47 | domentr | ⊢ ( ( ( 𝐴 × 2o ) ≼ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ∧ ( 𝒫 ( 𝐴 ∖ { 𝑥 } ) × 𝒫 { 𝑥 } ) ≈ 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ) → ( 𝐴 × 2o ) ≼ 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ) | |
| 48 | 43 46 47 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 × 2o ) ≼ 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ) |
| 49 | 27 | a1i | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → { 𝑥 } ∈ V ) |
| 50 | disjdifr | ⊢ ( ( 𝐴 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ | |
| 51 | 50 | a1i | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ) |
| 52 | endjudisj | ⊢ ( ( ( 𝐴 ∖ { 𝑥 } ) ∈ V ∧ { 𝑥 } ∈ V ∧ ( ( 𝐴 ∖ { 𝑥 } ) ∩ { 𝑥 } ) = ∅ ) → ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) | |
| 53 | 35 49 51 52 | syl3anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ ( ( 𝐴 ∖ { 𝑥 } ) ∪ { 𝑥 } ) ) |
| 54 | 53 34 | breqtrd | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ 𝐴 ) |
| 55 | pwen | ⊢ ( ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ 𝐴 → 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ 𝒫 𝐴 ) | |
| 56 | 54 55 | syl | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ 𝒫 𝐴 ) |
| 57 | domentr | ⊢ ( ( ( 𝐴 × 2o ) ≼ 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ∧ 𝒫 ( ( 𝐴 ∖ { 𝑥 } ) ⊔ { 𝑥 } ) ≈ 𝒫 𝐴 ) → ( 𝐴 × 2o ) ≼ 𝒫 𝐴 ) | |
| 58 | 48 56 57 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐴 × 2o ) ≼ 𝒫 𝐴 ) |
| 59 | 9 58 | exlimddv | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 × 2o ) ≼ 𝒫 𝐴 ) |
| 60 | domtr | ⊢ ( ( ( 𝐴 ⊔ 2o ) ≼ ( 𝐴 × 2o ) ∧ ( 𝐴 × 2o ) ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) | |
| 61 | 3 59 60 | syl2anc | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) |