This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a one-to-one onto function to a difference maps onto the difference of the images. (Contributed by Paul Chapman, 11-Apr-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resdif | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐶 ∖ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fofun | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → Fun ( 𝐹 ↾ 𝐴 ) ) | |
| 2 | difss | ⊢ ( 𝐴 ∖ 𝐵 ) ⊆ 𝐴 | |
| 3 | fof | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐹 ↾ 𝐴 ) : 𝐴 ⟶ 𝐶 ) | |
| 4 | 3 | fdmd | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → dom ( 𝐹 ↾ 𝐴 ) = 𝐴 ) |
| 5 | 2 4 | sseqtrrid | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐴 ∖ 𝐵 ) ⊆ dom ( 𝐹 ↾ 𝐴 ) ) |
| 6 | fores | ⊢ ( ( Fun ( 𝐹 ↾ 𝐴 ) ∧ ( 𝐴 ∖ 𝐵 ) ⊆ dom ( 𝐹 ↾ 𝐴 ) ) → ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 7 | 1 5 6 | syl2anc | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 8 | resres | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 9 | indif | ⊢ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐴 ∖ 𝐵 ) | |
| 10 | 9 | reseq2i | ⊢ ( 𝐹 ↾ ( 𝐴 ∩ ( 𝐴 ∖ 𝐵 ) ) ) = ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) |
| 11 | 8 10 | eqtri | ⊢ ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) |
| 12 | foeq1 | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) → ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) ) | |
| 13 | 11 12 | ax-mp | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 14 | 11 | rneqi | ⊢ ran ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) |
| 15 | df-ima | ⊢ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) = ran ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) | |
| 16 | df-ima | ⊢ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ran ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) | |
| 17 | 14 15 16 | 3eqtr4i | ⊢ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) |
| 18 | foeq3 | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) → ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 20 | 13 19 | bitri | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( ( 𝐹 ↾ 𝐴 ) “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 21 | 7 20 | sylib | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 22 | funres11 | ⊢ ( Fun ◡ 𝐹 → Fun ◡ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) | |
| 23 | dff1o3 | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ∧ Fun ◡ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) ) | |
| 24 | 23 | biimpri | ⊢ ( ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ∧ Fun ◡ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 25 | 21 22 24 | syl2anr | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 26 | 25 | 3adant3 | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ) |
| 27 | df-ima | ⊢ ( 𝐹 “ 𝐴 ) = ran ( 𝐹 ↾ 𝐴 ) | |
| 28 | forn | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ran ( 𝐹 ↾ 𝐴 ) = 𝐶 ) | |
| 29 | 27 28 | eqtrid | ⊢ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 → ( 𝐹 “ 𝐴 ) = 𝐶 ) |
| 30 | df-ima | ⊢ ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) | |
| 31 | forn | ⊢ ( ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 → ran ( 𝐹 ↾ 𝐵 ) = 𝐷 ) | |
| 32 | 30 31 | eqtrid | ⊢ ( ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 → ( 𝐹 “ 𝐵 ) = 𝐷 ) |
| 33 | 29 32 | anim12i | ⊢ ( ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( ( 𝐹 “ 𝐴 ) = 𝐶 ∧ ( 𝐹 “ 𝐵 ) = 𝐷 ) ) |
| 34 | imadif | ⊢ ( Fun ◡ 𝐹 → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) ) | |
| 35 | difeq12 | ⊢ ( ( ( 𝐹 “ 𝐴 ) = 𝐶 ∧ ( 𝐹 “ 𝐵 ) = 𝐷 ) → ( ( 𝐹 “ 𝐴 ) ∖ ( 𝐹 “ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) | |
| 36 | 34 35 | sylan9eq | ⊢ ( ( Fun ◡ 𝐹 ∧ ( ( 𝐹 “ 𝐴 ) = 𝐶 ∧ ( 𝐹 “ 𝐵 ) = 𝐷 ) ) → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) |
| 37 | 33 36 | sylan2 | ⊢ ( ( Fun ◡ 𝐹 ∧ ( ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) ) → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) |
| 38 | 37 | 3impb | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) = ( 𝐶 ∖ 𝐷 ) ) |
| 39 | 38 | f1oeq3d | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐹 “ ( 𝐴 ∖ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐶 ∖ 𝐷 ) ) ) |
| 40 | 26 39 | mpbid | ⊢ ( ( Fun ◡ 𝐹 ∧ ( 𝐹 ↾ 𝐴 ) : 𝐴 –onto→ 𝐶 ∧ ( 𝐹 ↾ 𝐵 ) : 𝐵 –onto→ 𝐷 ) → ( 𝐹 ↾ ( 𝐴 ∖ 𝐵 ) ) : ( 𝐴 ∖ 𝐵 ) –1-1-onto→ ( 𝐶 ∖ 𝐷 ) ) |