This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two mappings. (Contributed by Glauco Siliprandi, 26-Jun-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fcod.1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| fcod.2 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | ||
| Assertion | fcod | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fcod.1 | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 2 | fcod.2 | ⊢ ( 𝜑 → 𝐺 : 𝐴 ⟶ 𝐵 ) | |
| 3 | fco | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) | |
| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∘ 𝐺 ) : 𝐴 ⟶ 𝐶 ) |