This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The empty set does not strictly dominate any set. (Contributed by NM, 26-Oct-2003) Avoid ax-pow , ax-un . (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sdom0 | ⊢ ¬ 𝐴 ≺ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dom0 | ⊢ ( 𝐴 ≼ ∅ ↔ 𝐴 = ∅ ) | |
| 2 | en0 | ⊢ ( 𝐴 ≈ ∅ ↔ 𝐴 = ∅ ) | |
| 3 | 1 2 | sylbb2 | ⊢ ( 𝐴 ≼ ∅ → 𝐴 ≈ ∅ ) |
| 4 | iman | ⊢ ( ( 𝐴 ≼ ∅ → 𝐴 ≈ ∅ ) ↔ ¬ ( 𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅ ) ) | |
| 5 | 3 4 | mpbi | ⊢ ¬ ( 𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅ ) |
| 6 | brsdom | ⊢ ( 𝐴 ≺ ∅ ↔ ( 𝐴 ≼ ∅ ∧ ¬ 𝐴 ≈ ∅ ) ) | |
| 7 | 5 6 | mtbir | ⊢ ¬ 𝐴 ≺ ∅ |