This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993) (Proof shortened by Eric Schmidt, 22-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | spcv.1 | ⊢ 𝐴 ∈ V | |
| spcv.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | spcev | ⊢ ( 𝜓 → ∃ 𝑥 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spcv.1 | ⊢ 𝐴 ∈ V | |
| 2 | spcv.2 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | spcegv | ⊢ ( 𝐴 ∈ V → ( 𝜓 → ∃ 𝑥 𝜑 ) ) |
| 4 | 1 3 | ax-mp | ⊢ ( 𝜓 → ∃ 𝑥 𝜑 ) |