This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fnressn | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | ⊢ ( 𝑥 = 𝐵 → { 𝑥 } = { 𝐵 } ) | |
| 2 | 1 | reseq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ↾ { 𝑥 } ) = ( 𝐹 ↾ { 𝐵 } ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐵 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) | |
| 4 | opeq12 | ⊢ ( ( 𝑥 = 𝐵 ∧ ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐵 ) ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 = 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 ) | |
| 5 | 3 4 | mpdan | ⊢ ( 𝑥 = 𝐵 → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 = 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 ) |
| 6 | 5 | sneqd | ⊢ ( 𝑥 = 𝐵 → { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |
| 7 | 2 6 | eqeq12d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ↔ ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑥 = 𝐵 → ( ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) ↔ ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) ) |
| 9 | vex | ⊢ 𝑥 ∈ V | |
| 10 | 9 | snss | ⊢ ( 𝑥 ∈ 𝐴 ↔ { 𝑥 } ⊆ 𝐴 ) |
| 11 | fnssres | ⊢ ( ( 𝐹 Fn 𝐴 ∧ { 𝑥 } ⊆ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) Fn { 𝑥 } ) | |
| 12 | 10 11 | sylan2b | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) Fn { 𝑥 } ) |
| 13 | dffn2 | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) Fn { 𝑥 } ↔ ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ V ) | |
| 14 | 9 | fsn2 | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) : { 𝑥 } ⟶ V ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ V ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) |
| 15 | fvex | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ V | |
| 16 | 15 | biantrur | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ↔ ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ V ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ) |
| 17 | vsnid | ⊢ 𝑥 ∈ { 𝑥 } | |
| 18 | fvres | ⊢ ( 𝑥 ∈ { 𝑥 } → ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) |
| 20 | 19 | opeq2i | ⊢ 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 |
| 21 | 20 | sneqi | ⊢ { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } |
| 22 | 21 | eqeq2i | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ↔ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 23 | 16 22 | bitr3i | ⊢ ( ( ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) ∈ V ∧ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( ( 𝐹 ↾ { 𝑥 } ) ‘ 𝑥 ) 〉 } ) ↔ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 24 | 13 14 23 | 3bitri | ⊢ ( ( 𝐹 ↾ { 𝑥 } ) Fn { 𝑥 } ↔ ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 25 | 12 24 | sylib | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) |
| 26 | 25 | expcom | ⊢ ( 𝑥 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ { 𝑥 } ) = { 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 } ) ) |
| 27 | 8 26 | vtoclga | ⊢ ( 𝐵 ∈ 𝐴 → ( 𝐹 Fn 𝐴 → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) ) |
| 28 | 27 | impcom | ⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴 ) → ( 𝐹 ↾ { 𝐵 } ) = { 〈 𝐵 , ( 𝐹 ‘ 𝐵 ) 〉 } ) |