This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | canthp1lem2.1 | |- ( ph -> 1o ~< A ) |
|
| canthp1lem2.2 | |- ( ph -> F : ~P A -1-1-onto-> ( A |_| 1o ) ) |
||
| canthp1lem2.3 | |- ( ph -> G : ( ( A |_| 1o ) \ { ( F ` A ) } ) -1-1-onto-> A ) |
||
| canthp1lem2.4 | |- H = ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) |
||
| canthp1lem2.5 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( H ` ( `' r " { y } ) ) = y ) ) } |
||
| canthp1lem2.6 | |- B = U. dom W |
||
| Assertion | canthp1lem2 | |- -. ph |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | canthp1lem2.1 | |- ( ph -> 1o ~< A ) |
|
| 2 | canthp1lem2.2 | |- ( ph -> F : ~P A -1-1-onto-> ( A |_| 1o ) ) |
|
| 3 | canthp1lem2.3 | |- ( ph -> G : ( ( A |_| 1o ) \ { ( F ` A ) } ) -1-1-onto-> A ) |
|
| 4 | canthp1lem2.4 | |- H = ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) |
|
| 5 | canthp1lem2.5 | |- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( H ` ( `' r " { y } ) ) = y ) ) } |
|
| 6 | canthp1lem2.6 | |- B = U. dom W |
|
| 7 | relsdom | |- Rel ~< |
|
| 8 | 7 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 9 | 1 8 | syl | |- ( ph -> A e. _V ) |
| 10 | 9 | pwexd | |- ( ph -> ~P A e. _V ) |
| 11 | f1oeng | |- ( ( ~P A e. _V /\ F : ~P A -1-1-onto-> ( A |_| 1o ) ) -> ~P A ~~ ( A |_| 1o ) ) |
|
| 12 | 10 2 11 | syl2anc | |- ( ph -> ~P A ~~ ( A |_| 1o ) ) |
| 13 | 12 | ensymd | |- ( ph -> ( A |_| 1o ) ~~ ~P A ) |
| 14 | canth2g | |- ( A e. _V -> A ~< ~P A ) |
|
| 15 | 9 14 | syl | |- ( ph -> A ~< ~P A ) |
| 16 | sdomen2 | |- ( ~P A ~~ ( A |_| 1o ) -> ( A ~< ~P A <-> A ~< ( A |_| 1o ) ) ) |
|
| 17 | 12 16 | syl | |- ( ph -> ( A ~< ~P A <-> A ~< ( A |_| 1o ) ) ) |
| 18 | 15 17 | mpbid | |- ( ph -> A ~< ( A |_| 1o ) ) |
| 19 | sdomnen | |- ( A ~< ( A |_| 1o ) -> -. A ~~ ( A |_| 1o ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> -. A ~~ ( A |_| 1o ) ) |
| 21 | omelon | |- _om e. On |
|
| 22 | onenon | |- ( _om e. On -> _om e. dom card ) |
|
| 23 | 21 22 | ax-mp | |- _om e. dom card |
| 24 | dff1o3 | |- ( F : ~P A -1-1-onto-> ( A |_| 1o ) <-> ( F : ~P A -onto-> ( A |_| 1o ) /\ Fun `' F ) ) |
|
| 25 | 24 | simprbi | |- ( F : ~P A -1-1-onto-> ( A |_| 1o ) -> Fun `' F ) |
| 26 | 2 25 | syl | |- ( ph -> Fun `' F ) |
| 27 | f1ofo | |- ( F : ~P A -1-1-onto-> ( A |_| 1o ) -> F : ~P A -onto-> ( A |_| 1o ) ) |
|
| 28 | 2 27 | syl | |- ( ph -> F : ~P A -onto-> ( A |_| 1o ) ) |
| 29 | f1ofn | |- ( F : ~P A -1-1-onto-> ( A |_| 1o ) -> F Fn ~P A ) |
|
| 30 | fnresdm | |- ( F Fn ~P A -> ( F |` ~P A ) = F ) |
|
| 31 | foeq1 | |- ( ( F |` ~P A ) = F -> ( ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) <-> F : ~P A -onto-> ( A |_| 1o ) ) ) |
|
| 32 | 2 29 30 31 | 4syl | |- ( ph -> ( ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) <-> F : ~P A -onto-> ( A |_| 1o ) ) ) |
| 33 | 28 32 | mpbird | |- ( ph -> ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) ) |
| 34 | fvex | |- ( F ` A ) e. _V |
|
| 35 | f1osng | |- ( ( A e. _V /\ ( F ` A ) e. _V ) -> { <. A , ( F ` A ) >. } : { A } -1-1-onto-> { ( F ` A ) } ) |
|
| 36 | 9 34 35 | sylancl | |- ( ph -> { <. A , ( F ` A ) >. } : { A } -1-1-onto-> { ( F ` A ) } ) |
| 37 | 2 29 | syl | |- ( ph -> F Fn ~P A ) |
| 38 | pwidg | |- ( A e. _V -> A e. ~P A ) |
|
| 39 | 9 38 | syl | |- ( ph -> A e. ~P A ) |
| 40 | fnressn | |- ( ( F Fn ~P A /\ A e. ~P A ) -> ( F |` { A } ) = { <. A , ( F ` A ) >. } ) |
|
| 41 | 37 39 40 | syl2anc | |- ( ph -> ( F |` { A } ) = { <. A , ( F ` A ) >. } ) |
| 42 | 41 | f1oeq1d | |- ( ph -> ( ( F |` { A } ) : { A } -1-1-onto-> { ( F ` A ) } <-> { <. A , ( F ` A ) >. } : { A } -1-1-onto-> { ( F ` A ) } ) ) |
| 43 | 36 42 | mpbird | |- ( ph -> ( F |` { A } ) : { A } -1-1-onto-> { ( F ` A ) } ) |
| 44 | f1ofo | |- ( ( F |` { A } ) : { A } -1-1-onto-> { ( F ` A ) } -> ( F |` { A } ) : { A } -onto-> { ( F ` A ) } ) |
|
| 45 | 43 44 | syl | |- ( ph -> ( F |` { A } ) : { A } -onto-> { ( F ` A ) } ) |
| 46 | resdif | |- ( ( Fun `' F /\ ( F |` ~P A ) : ~P A -onto-> ( A |_| 1o ) /\ ( F |` { A } ) : { A } -onto-> { ( F ` A ) } ) -> ( F |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> ( ( A |_| 1o ) \ { ( F ` A ) } ) ) |
|
| 47 | 26 33 45 46 | syl3anc | |- ( ph -> ( F |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> ( ( A |_| 1o ) \ { ( F ` A ) } ) ) |
| 48 | f1oco | |- ( ( G : ( ( A |_| 1o ) \ { ( F ` A ) } ) -1-1-onto-> A /\ ( F |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> ( ( A |_| 1o ) \ { ( F ` A ) } ) ) -> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
|
| 49 | 3 47 48 | syl2anc | |- ( ph -> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
| 50 | resco | |- ( ( G o. F ) |` ( ~P A \ { A } ) ) = ( G o. ( F |` ( ~P A \ { A } ) ) ) |
|
| 51 | f1oeq1 | |- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) = ( G o. ( F |` ( ~P A \ { A } ) ) ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A <-> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) ) |
|
| 52 | 50 51 | ax-mp | |- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A <-> ( G o. ( F |` ( ~P A \ { A } ) ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
| 53 | 49 52 | sylibr | |- ( ph -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A ) |
| 54 | f1of | |- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) --> A ) |
|
| 55 | 53 54 | syl | |- ( ph -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) --> A ) |
| 56 | 0elpw | |- (/) e. ~P A |
|
| 57 | 56 | a1i | |- ( ( ( ph /\ x e. ~P A ) /\ x = A ) -> (/) e. ~P A ) |
| 58 | sdom0 | |- -. 1o ~< (/) |
|
| 59 | breq2 | |- ( (/) = A -> ( 1o ~< (/) <-> 1o ~< A ) ) |
|
| 60 | 58 59 | mtbii | |- ( (/) = A -> -. 1o ~< A ) |
| 61 | 60 | necon2ai | |- ( 1o ~< A -> (/) =/= A ) |
| 62 | 1 61 | syl | |- ( ph -> (/) =/= A ) |
| 63 | 62 | ad2antrr | |- ( ( ( ph /\ x e. ~P A ) /\ x = A ) -> (/) =/= A ) |
| 64 | eldifsn | |- ( (/) e. ( ~P A \ { A } ) <-> ( (/) e. ~P A /\ (/) =/= A ) ) |
|
| 65 | 57 63 64 | sylanbrc | |- ( ( ( ph /\ x e. ~P A ) /\ x = A ) -> (/) e. ( ~P A \ { A } ) ) |
| 66 | simplr | |- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> x e. ~P A ) |
|
| 67 | simpr | |- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> -. x = A ) |
|
| 68 | 67 | neqned | |- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> x =/= A ) |
| 69 | eldifsn | |- ( x e. ( ~P A \ { A } ) <-> ( x e. ~P A /\ x =/= A ) ) |
|
| 70 | 66 68 69 | sylanbrc | |- ( ( ( ph /\ x e. ~P A ) /\ -. x = A ) -> x e. ( ~P A \ { A } ) ) |
| 71 | 65 70 | ifclda | |- ( ( ph /\ x e. ~P A ) -> if ( x = A , (/) , x ) e. ( ~P A \ { A } ) ) |
| 72 | 71 | fmpttd | |- ( ph -> ( x e. ~P A |-> if ( x = A , (/) , x ) ) : ~P A --> ( ~P A \ { A } ) ) |
| 73 | 55 72 | fcod | |- ( ph -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) : ~P A --> A ) |
| 74 | 72 | frnd | |- ( ph -> ran ( x e. ~P A |-> if ( x = A , (/) , x ) ) C_ ( ~P A \ { A } ) ) |
| 75 | cores | |- ( ran ( x e. ~P A |-> if ( x = A , (/) , x ) ) C_ ( ~P A \ { A } ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) = ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ) |
|
| 76 | 74 75 | syl | |- ( ph -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) = ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ) |
| 77 | 76 4 | eqtr4di | |- ( ph -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) = H ) |
| 78 | 77 | feq1d | |- ( ph -> ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) : ~P A --> A <-> H : ~P A --> A ) ) |
| 79 | 73 78 | mpbid | |- ( ph -> H : ~P A --> A ) |
| 80 | inss1 | |- ( ~P A i^i dom card ) C_ ~P A |
|
| 81 | 80 | a1i | |- ( ph -> ( ~P A i^i dom card ) C_ ~P A ) |
| 82 | eqid | |- ( `' ( W ` B ) " { ( H ` B ) } ) = ( `' ( W ` B ) " { ( H ` B ) } ) |
|
| 83 | 5 6 82 | canth4 | |- ( ( A e. _V /\ H : ~P A --> A /\ ( ~P A i^i dom card ) C_ ~P A ) -> ( B C_ A /\ ( `' ( W ` B ) " { ( H ` B ) } ) C. B /\ ( H ` B ) = ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
| 84 | 9 79 81 83 | syl3anc | |- ( ph -> ( B C_ A /\ ( `' ( W ` B ) " { ( H ` B ) } ) C. B /\ ( H ` B ) = ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
| 85 | 84 | simp1d | |- ( ph -> B C_ A ) |
| 86 | 84 | simp2d | |- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) C. B ) |
| 87 | 86 | pssned | |- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) =/= B ) |
| 88 | 87 | necomd | |- ( ph -> B =/= ( `' ( W ` B ) " { ( H ` B ) } ) ) |
| 89 | 84 | simp3d | |- ( ph -> ( H ` B ) = ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 90 | 4 | fveq1i | |- ( H ` B ) = ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` B ) |
| 91 | 4 | fveq1i | |- ( H ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) |
| 92 | 89 90 91 | 3eqtr3g | |- ( ph -> ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` B ) = ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 93 | 9 85 | sselpwd | |- ( ph -> B e. ~P A ) |
| 94 | 72 93 | fvco3d | |- ( ph -> ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` B ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) ) |
| 95 | 86 | pssssd | |- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) C_ B ) |
| 96 | 95 85 | sstrd | |- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) C_ A ) |
| 97 | 9 96 | sselpwd | |- ( ph -> ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A ) |
| 98 | 72 97 | fvco3d | |- ( ph -> ( ( ( G o. F ) o. ( x e. ~P A |-> if ( x = A , (/) , x ) ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
| 99 | 92 94 98 | 3eqtr3d | |- ( ph -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
| 100 | 99 | adantr | |- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) = ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) ) |
| 101 | eqid | |- ( x e. ~P A |-> if ( x = A , (/) , x ) ) = ( x e. ~P A |-> if ( x = A , (/) , x ) ) |
|
| 102 | eqeq1 | |- ( x = B -> ( x = A <-> B = A ) ) |
|
| 103 | id | |- ( x = B -> x = B ) |
|
| 104 | 102 103 | ifbieq2d | |- ( x = B -> if ( x = A , (/) , x ) = if ( B = A , (/) , B ) ) |
| 105 | ifcl | |- ( ( (/) e. ~P A /\ B e. ~P A ) -> if ( B = A , (/) , B ) e. ~P A ) |
|
| 106 | 56 93 105 | sylancr | |- ( ph -> if ( B = A , (/) , B ) e. ~P A ) |
| 107 | 101 104 93 106 | fvmptd3 | |- ( ph -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) = if ( B = A , (/) , B ) ) |
| 108 | pssne | |- ( B C. A -> B =/= A ) |
|
| 109 | 108 | neneqd | |- ( B C. A -> -. B = A ) |
| 110 | 109 | iffalsed | |- ( B C. A -> if ( B = A , (/) , B ) = B ) |
| 111 | 107 110 | sylan9eq | |- ( ( ph /\ B C. A ) -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) = B ) |
| 112 | 111 | fveq2d | |- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` B ) ) = ( ( G o. F ) ` B ) ) |
| 113 | eqeq1 | |- ( x = ( `' ( W ` B ) " { ( H ` B ) } ) -> ( x = A <-> ( `' ( W ` B ) " { ( H ` B ) } ) = A ) ) |
|
| 114 | id | |- ( x = ( `' ( W ` B ) " { ( H ` B ) } ) -> x = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
|
| 115 | 113 114 | ifbieq2d | |- ( x = ( `' ( W ` B ) " { ( H ` B ) } ) -> if ( x = A , (/) , x ) = if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 116 | ifcl | |- ( ( (/) e. ~P A /\ ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A ) -> if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) e. ~P A ) |
|
| 117 | 56 97 116 | sylancr | |- ( ph -> if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) e. ~P A ) |
| 118 | 101 115 97 117 | fvmptd3 | |- ( ph -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 119 | 118 | adantr | |- ( ( ph /\ B C. A ) -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 120 | sspsstr | |- ( ( ( `' ( W ` B ) " { ( H ` B ) } ) C_ B /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) C. A ) |
|
| 121 | 95 120 | sylan | |- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) C. A ) |
| 122 | 121 | pssned | |- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) =/= A ) |
| 123 | 122 | neneqd | |- ( ( ph /\ B C. A ) -> -. ( `' ( W ` B ) " { ( H ` B ) } ) = A ) |
| 124 | 123 | iffalsed | |- ( ( ph /\ B C. A ) -> if ( ( `' ( W ` B ) " { ( H ` B ) } ) = A , (/) , ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
| 125 | 119 124 | eqtrd | |- ( ( ph /\ B C. A ) -> ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
| 126 | 125 | fveq2d | |- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` ( ( x e. ~P A |-> if ( x = A , (/) , x ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) = ( ( G o. F ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 127 | 100 112 126 | 3eqtr3d | |- ( ( ph /\ B C. A ) -> ( ( G o. F ) ` B ) = ( ( G o. F ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 128 | 93 108 | anim12i | |- ( ( ph /\ B C. A ) -> ( B e. ~P A /\ B =/= A ) ) |
| 129 | eldifsn | |- ( B e. ( ~P A \ { A } ) <-> ( B e. ~P A /\ B =/= A ) ) |
|
| 130 | 128 129 | sylibr | |- ( ( ph /\ B C. A ) -> B e. ( ~P A \ { A } ) ) |
| 131 | 130 | fvresd | |- ( ( ph /\ B C. A ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( G o. F ) ` B ) ) |
| 132 | 97 | adantr | |- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A ) |
| 133 | eldifsn | |- ( ( `' ( W ` B ) " { ( H ` B ) } ) e. ( ~P A \ { A } ) <-> ( ( `' ( W ` B ) " { ( H ` B ) } ) e. ~P A /\ ( `' ( W ` B ) " { ( H ` B ) } ) =/= A ) ) |
|
| 134 | 132 122 133 | sylanbrc | |- ( ( ph /\ B C. A ) -> ( `' ( W ` B ) " { ( H ` B ) } ) e. ( ~P A \ { A } ) ) |
| 135 | 134 | fvresd | |- ( ( ph /\ B C. A ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) = ( ( G o. F ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 136 | 127 131 135 | 3eqtr4d | |- ( ( ph /\ B C. A ) -> ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 137 | f1of1 | |- ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-onto-> A -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A ) |
|
| 138 | 53 137 | syl | |- ( ph -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A ) |
| 139 | 138 | adantr | |- ( ( ph /\ B C. A ) -> ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A ) |
| 140 | f1fveq | |- ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) : ( ~P A \ { A } ) -1-1-> A /\ ( B e. ( ~P A \ { A } ) /\ ( `' ( W ` B ) " { ( H ` B ) } ) e. ( ~P A \ { A } ) ) ) -> ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) <-> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
|
| 141 | 139 130 134 140 | syl12anc | |- ( ( ph /\ B C. A ) -> ( ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` B ) = ( ( ( G o. F ) |` ( ~P A \ { A } ) ) ` ( `' ( W ` B ) " { ( H ` B ) } ) ) <-> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 142 | 136 141 | mpbid | |- ( ( ph /\ B C. A ) -> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) |
| 143 | 142 | ex | |- ( ph -> ( B C. A -> B = ( `' ( W ` B ) " { ( H ` B ) } ) ) ) |
| 144 | 143 | necon3ad | |- ( ph -> ( B =/= ( `' ( W ` B ) " { ( H ` B ) } ) -> -. B C. A ) ) |
| 145 | 88 144 | mpd | |- ( ph -> -. B C. A ) |
| 146 | npss | |- ( -. B C. A <-> ( B C_ A -> B = A ) ) |
|
| 147 | 145 146 | sylib | |- ( ph -> ( B C_ A -> B = A ) ) |
| 148 | 85 147 | mpd | |- ( ph -> B = A ) |
| 149 | eqid | |- B = B |
|
| 150 | eqid | |- ( W ` B ) = ( W ` B ) |
|
| 151 | 149 150 | pm3.2i | |- ( B = B /\ ( W ` B ) = ( W ` B ) ) |
| 152 | elinel1 | |- ( x e. ( ~P A i^i dom card ) -> x e. ~P A ) |
|
| 153 | ffvelcdm | |- ( ( H : ~P A --> A /\ x e. ~P A ) -> ( H ` x ) e. A ) |
|
| 154 | 79 152 153 | syl2an | |- ( ( ph /\ x e. ( ~P A i^i dom card ) ) -> ( H ` x ) e. A ) |
| 155 | 5 9 154 6 | fpwwe | |- ( ph -> ( ( B W ( W ` B ) /\ ( H ` B ) e. B ) <-> ( B = B /\ ( W ` B ) = ( W ` B ) ) ) ) |
| 156 | 151 155 | mpbiri | |- ( ph -> ( B W ( W ` B ) /\ ( H ` B ) e. B ) ) |
| 157 | 156 | simpld | |- ( ph -> B W ( W ` B ) ) |
| 158 | 5 9 | fpwwelem | |- ( ph -> ( B W ( W ` B ) <-> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( H ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) ) |
| 159 | 157 158 | mpbid | |- ( ph -> ( ( B C_ A /\ ( W ` B ) C_ ( B X. B ) ) /\ ( ( W ` B ) We B /\ A. y e. B ( H ` ( `' ( W ` B ) " { y } ) ) = y ) ) ) |
| 160 | 159 | simprld | |- ( ph -> ( W ` B ) We B ) |
| 161 | fvex | |- ( W ` B ) e. _V |
|
| 162 | weeq1 | |- ( r = ( W ` B ) -> ( r We B <-> ( W ` B ) We B ) ) |
|
| 163 | 161 162 | spcev | |- ( ( W ` B ) We B -> E. r r We B ) |
| 164 | 160 163 | syl | |- ( ph -> E. r r We B ) |
| 165 | ween | |- ( B e. dom card <-> E. r r We B ) |
|
| 166 | 164 165 | sylibr | |- ( ph -> B e. dom card ) |
| 167 | 148 166 | eqeltrrd | |- ( ph -> A e. dom card ) |
| 168 | domtri2 | |- ( ( _om e. dom card /\ A e. dom card ) -> ( _om ~<_ A <-> -. A ~< _om ) ) |
|
| 169 | 23 167 168 | sylancr | |- ( ph -> ( _om ~<_ A <-> -. A ~< _om ) ) |
| 170 | infdju1 | |- ( _om ~<_ A -> ( A |_| 1o ) ~~ A ) |
|
| 171 | 169 170 | biimtrrdi | |- ( ph -> ( -. A ~< _om -> ( A |_| 1o ) ~~ A ) ) |
| 172 | ensym | |- ( ( A |_| 1o ) ~~ A -> A ~~ ( A |_| 1o ) ) |
|
| 173 | 171 172 | syl6 | |- ( ph -> ( -. A ~< _om -> A ~~ ( A |_| 1o ) ) ) |
| 174 | 20 173 | mt3d | |- ( ph -> A ~< _om ) |
| 175 | 2onn | |- 2o e. _om |
|
| 176 | nnsdom | |- ( 2o e. _om -> 2o ~< _om ) |
|
| 177 | 175 176 | ax-mp | |- 2o ~< _om |
| 178 | djufi | |- ( ( A ~< _om /\ 2o ~< _om ) -> ( A |_| 2o ) ~< _om ) |
|
| 179 | 174 177 178 | sylancl | |- ( ph -> ( A |_| 2o ) ~< _om ) |
| 180 | isfinite | |- ( ( A |_| 2o ) e. Fin <-> ( A |_| 2o ) ~< _om ) |
|
| 181 | 179 180 | sylibr | |- ( ph -> ( A |_| 2o ) e. Fin ) |
| 182 | sssucid | |- 1o C_ suc 1o |
|
| 183 | df-2o | |- 2o = suc 1o |
|
| 184 | 182 183 | sseqtrri | |- 1o C_ 2o |
| 185 | xpss2 | |- ( 1o C_ 2o -> ( { 1o } X. 1o ) C_ ( { 1o } X. 2o ) ) |
|
| 186 | 184 185 | ax-mp | |- ( { 1o } X. 1o ) C_ ( { 1o } X. 2o ) |
| 187 | unss2 | |- ( ( { 1o } X. 1o ) C_ ( { 1o } X. 2o ) -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
|
| 188 | 186 187 | mp1i | |- ( ph -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
| 189 | ssun2 | |- ( { 1o } X. 2o ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) |
|
| 190 | 1oex | |- 1o e. _V |
|
| 191 | 190 | snid | |- 1o e. { 1o } |
| 192 | 190 | sucid | |- 1o e. suc 1o |
| 193 | 192 183 | eleqtrri | |- 1o e. 2o |
| 194 | opelxpi | |- ( ( 1o e. { 1o } /\ 1o e. 2o ) -> <. 1o , 1o >. e. ( { 1o } X. 2o ) ) |
|
| 195 | 191 193 194 | mp2an | |- <. 1o , 1o >. e. ( { 1o } X. 2o ) |
| 196 | 189 195 | sselii | |- <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) |
| 197 | 1n0 | |- 1o =/= (/) |
|
| 198 | 197 | neii | |- -. 1o = (/) |
| 199 | opelxp1 | |- ( <. 1o , 1o >. e. ( { (/) } X. A ) -> 1o e. { (/) } ) |
|
| 200 | elsni | |- ( 1o e. { (/) } -> 1o = (/) ) |
|
| 201 | 199 200 | syl | |- ( <. 1o , 1o >. e. ( { (/) } X. A ) -> 1o = (/) ) |
| 202 | 198 201 | mto | |- -. <. 1o , 1o >. e. ( { (/) } X. A ) |
| 203 | 1onn | |- 1o e. _om |
|
| 204 | nnord | |- ( 1o e. _om -> Ord 1o ) |
|
| 205 | ordirr | |- ( Ord 1o -> -. 1o e. 1o ) |
|
| 206 | 203 204 205 | mp2b | |- -. 1o e. 1o |
| 207 | opelxp2 | |- ( <. 1o , 1o >. e. ( { 1o } X. 1o ) -> 1o e. 1o ) |
|
| 208 | 206 207 | mto | |- -. <. 1o , 1o >. e. ( { 1o } X. 1o ) |
| 209 | 202 208 | pm3.2ni | |- -. ( <. 1o , 1o >. e. ( { (/) } X. A ) \/ <. 1o , 1o >. e. ( { 1o } X. 1o ) ) |
| 210 | elun | |- ( <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) <-> ( <. 1o , 1o >. e. ( { (/) } X. A ) \/ <. 1o , 1o >. e. ( { 1o } X. 1o ) ) ) |
|
| 211 | 209 210 | mtbir | |- -. <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
| 212 | ssnelpss | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) -> ( ( <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) /\ -. <. 1o , 1o >. e. ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) ) |
|
| 213 | 196 211 212 | mp2ani | |- ( ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C_ ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
| 214 | 188 213 | syl | |- ( ph -> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
| 215 | df-dju | |- ( A |_| 1o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) |
|
| 216 | df-dju | |- ( A |_| 2o ) = ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) |
|
| 217 | 215 216 | psseq12i | |- ( ( A |_| 1o ) C. ( A |_| 2o ) <-> ( ( { (/) } X. A ) u. ( { 1o } X. 1o ) ) C. ( ( { (/) } X. A ) u. ( { 1o } X. 2o ) ) ) |
| 218 | 214 217 | sylibr | |- ( ph -> ( A |_| 1o ) C. ( A |_| 2o ) ) |
| 219 | php3 | |- ( ( ( A |_| 2o ) e. Fin /\ ( A |_| 1o ) C. ( A |_| 2o ) ) -> ( A |_| 1o ) ~< ( A |_| 2o ) ) |
|
| 220 | 181 218 219 | syl2anc | |- ( ph -> ( A |_| 1o ) ~< ( A |_| 2o ) ) |
| 221 | canthp1lem1 | |- ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A ) |
|
| 222 | 1 221 | syl | |- ( ph -> ( A |_| 2o ) ~<_ ~P A ) |
| 223 | sdomdomtr | |- ( ( ( A |_| 1o ) ~< ( A |_| 2o ) /\ ( A |_| 2o ) ~<_ ~P A ) -> ( A |_| 1o ) ~< ~P A ) |
|
| 224 | 220 222 223 | syl2anc | |- ( ph -> ( A |_| 1o ) ~< ~P A ) |
| 225 | sdomnen | |- ( ( A |_| 1o ) ~< ~P A -> -. ( A |_| 1o ) ~~ ~P A ) |
|
| 226 | 224 225 | syl | |- ( ph -> -. ( A |_| 1o ) ~~ ~P A ) |
| 227 | 13 226 | pm2.65i | |- -. ph |