This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordinal 2 is a natural number. For a shorter proof using Peano's postulates that depends on ax-un , see 2onnALT . (Contributed by NM, 28-Sep-2004) Avoid ax-un . (Revised by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2onn | ⊢ 2o ∈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2on | ⊢ 2o ∈ On | |
| 2 | 2ellim | ⊢ ( Lim 𝑥 → 2o ∈ 𝑥 ) | |
| 3 | 2 | ax-gen | ⊢ ∀ 𝑥 ( Lim 𝑥 → 2o ∈ 𝑥 ) |
| 4 | elom | ⊢ ( 2o ∈ ω ↔ ( 2o ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → 2o ∈ 𝑥 ) ) ) | |
| 5 | 1 3 4 | mpbir2an | ⊢ 2o ∈ ω |