This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for fpwwe . (Contributed by Mario Carneiro, 15-May-2015) (Revised by AV, 20-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fpwwe.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| fpwwe.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| Assertion | fpwwelem | ⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fpwwe.1 | ⊢ 𝑊 = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } | |
| 2 | fpwwe.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 3 | 1 | relopabiv | ⊢ Rel 𝑊 |
| 4 | 3 | a1i | ⊢ ( 𝜑 → Rel 𝑊 ) |
| 5 | brrelex12 | ⊢ ( ( Rel 𝑊 ∧ 𝑋 𝑊 𝑅 ) → ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) ) | |
| 6 | 4 5 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 𝑊 𝑅 ) → ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) ) |
| 7 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 8 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑋 ⊆ 𝐴 ) | |
| 9 | 7 8 | ssexd | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑋 ∈ V ) |
| 10 | 9 9 | xpexd | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → ( 𝑋 × 𝑋 ) ∈ V ) |
| 11 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) | |
| 12 | 10 11 | ssexd | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → 𝑅 ∈ V ) |
| 13 | 9 12 | jca | ⊢ ( ( 𝜑 ∧ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) → ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) ) |
| 14 | simpl | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → 𝑥 = 𝑋 ) | |
| 15 | 14 | sseq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) |
| 16 | simpr | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) | |
| 17 | 14 | sqxpeqd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑥 × 𝑥 ) = ( 𝑋 × 𝑋 ) ) |
| 18 | 16 17 | sseq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑟 ⊆ ( 𝑥 × 𝑥 ) ↔ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ) |
| 19 | 15 18 | anbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ↔ ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ) ) |
| 20 | 16 14 | weeq12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( 𝑟 We 𝑥 ↔ 𝑅 We 𝑋 ) ) |
| 21 | 16 | cnveqd | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ◡ 𝑟 = ◡ 𝑅 ) |
| 22 | 21 | imaeq1d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ◡ 𝑟 “ { 𝑦 } ) = ( ◡ 𝑅 “ { 𝑦 } ) ) |
| 23 | 22 | fveqeq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ↔ ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) |
| 24 | 14 23 | raleqbidv | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ↔ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) |
| 25 | 20 24 | anbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ↔ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) |
| 26 | 19 25 | anbi12d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝐹 ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
| 27 | 26 1 | brabga | ⊢ ( ( 𝑋 ∈ V ∧ 𝑅 ∈ V ) → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |
| 28 | 6 13 27 | pm5.21nd | ⊢ ( 𝜑 → ( 𝑋 𝑊 𝑅 ↔ ( ( 𝑋 ⊆ 𝐴 ∧ 𝑅 ⊆ ( 𝑋 × 𝑋 ) ) ∧ ( 𝑅 We 𝑋 ∧ ∀ 𝑦 ∈ 𝑋 ( 𝐹 ‘ ( ◡ 𝑅 “ { 𝑦 } ) ) = 𝑦 ) ) ) ) |