This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A slightly stronger form of Cantor's theorem: For 1 < n , n + 1 < 2 ^ n . Corollary 1.6 of KanamoriPincus p. 417. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthp1 | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sdom2 | ⊢ 1o ≺ 2o | |
| 2 | sdomdom | ⊢ ( 1o ≺ 2o → 1o ≼ 2o ) | |
| 3 | 1 2 | ax-mp | ⊢ 1o ≼ 2o |
| 4 | relsdom | ⊢ Rel ≺ | |
| 5 | 4 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 6 | djudom2 | ⊢ ( ( 1o ≼ 2o ∧ 𝐴 ∈ V ) → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 2o ) ) | |
| 7 | 3 5 6 | sylancr | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 2o ) ) |
| 8 | canthp1lem1 | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) | |
| 9 | domtr | ⊢ ( ( ( 𝐴 ⊔ 1o ) ≼ ( 𝐴 ⊔ 2o ) ∧ ( 𝐴 ⊔ 2o ) ≼ 𝒫 𝐴 ) → ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) | |
| 10 | 7 8 9 | syl2anc | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ) |
| 11 | fal | ⊢ ¬ ⊥ | |
| 12 | ensym | ⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ) | |
| 13 | bren | ⊢ ( 𝒫 𝐴 ≈ ( 𝐴 ⊔ 1o ) ↔ ∃ 𝑓 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) | |
| 14 | 12 13 | sylib | ⊢ ( ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 → ∃ 𝑓 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) |
| 15 | f1of | ⊢ ( 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → 𝑓 : 𝒫 𝐴 ⟶ ( 𝐴 ⊔ 1o ) ) | |
| 16 | pwidg | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴 ) | |
| 17 | 5 16 | syl | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ 𝒫 𝐴 ) |
| 18 | ffvelcdm | ⊢ ( ( 𝑓 : 𝒫 𝐴 ⟶ ( 𝐴 ⊔ 1o ) ∧ 𝐴 ∈ 𝒫 𝐴 ) → ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐴 ⊔ 1o ) ) | |
| 19 | 15 17 18 | syl2anr | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐴 ⊔ 1o ) ) |
| 20 | dju1dif | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝑓 ‘ 𝐴 ) ∈ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐴 ) | |
| 21 | 5 19 20 | syl2an2r | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐴 ) |
| 22 | bren | ⊢ ( ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) ≈ 𝐴 ↔ ∃ 𝑔 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | |
| 23 | 21 22 | sylib | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ∃ 𝑔 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) |
| 24 | simpll | ⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → 1o ≺ 𝐴 ) | |
| 25 | simplr | ⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) | |
| 26 | simpr | ⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) | |
| 27 | eqeq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 = 𝐴 ↔ 𝑥 = 𝐴 ) ) | |
| 28 | id | ⊢ ( 𝑤 = 𝑥 → 𝑤 = 𝑥 ) | |
| 29 | 27 28 | ifbieq2d | ⊢ ( 𝑤 = 𝑥 → if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) = if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) |
| 30 | 29 | cbvmptv | ⊢ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) = ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) |
| 31 | 30 | coeq2i | ⊢ ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) = ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑥 ∈ 𝒫 𝐴 ↦ if ( 𝑥 = 𝐴 , ∅ , 𝑥 ) ) ) |
| 32 | eqid | ⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } = { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } | |
| 33 | 32 | fpwwecbv | ⊢ { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } = { 〈 𝑥 , 𝑟 〉 ∣ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ ( 𝑥 × 𝑥 ) ) ∧ ( 𝑟 We 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑟 “ { 𝑦 } ) ) = 𝑦 ) ) } |
| 34 | eqid | ⊢ ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } = ∪ dom { 〈 𝑎 , 𝑠 〉 ∣ ( ( 𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ ( 𝑎 × 𝑎 ) ) ∧ ( 𝑠 We 𝑎 ∧ ∀ 𝑧 ∈ 𝑎 ( ( ( 𝑔 ∘ 𝑓 ) ∘ ( 𝑤 ∈ 𝒫 𝐴 ↦ if ( 𝑤 = 𝐴 , ∅ , 𝑤 ) ) ) ‘ ( ◡ 𝑠 “ { 𝑧 } ) ) = 𝑧 ) ) } | |
| 35 | 24 25 26 31 33 34 | canthp1lem2 | ⊢ ¬ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) |
| 36 | 35 | pm2.21i | ⊢ ( ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) ∧ 𝑔 : ( ( 𝐴 ⊔ 1o ) ∖ { ( 𝑓 ‘ 𝐴 ) } ) –1-1-onto→ 𝐴 ) → ⊥ ) |
| 37 | 23 36 | exlimddv | ⊢ ( ( 1o ≺ 𝐴 ∧ 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) ) → ⊥ ) |
| 38 | 37 | ex | ⊢ ( 1o ≺ 𝐴 → ( 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → ⊥ ) ) |
| 39 | 38 | exlimdv | ⊢ ( 1o ≺ 𝐴 → ( ∃ 𝑓 𝑓 : 𝒫 𝐴 –1-1-onto→ ( 𝐴 ⊔ 1o ) → ⊥ ) ) |
| 40 | 14 39 | syl5 | ⊢ ( 1o ≺ 𝐴 → ( ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 → ⊥ ) ) |
| 41 | 11 40 | mtoi | ⊢ ( 1o ≺ 𝐴 → ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) |
| 42 | brsdom | ⊢ ( ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ↔ ( ( 𝐴 ⊔ 1o ) ≼ 𝒫 𝐴 ∧ ¬ ( 𝐴 ⊔ 1o ) ≈ 𝒫 𝐴 ) ) | |
| 43 | 10 41 42 | sylanbrc | ⊢ ( 1o ≺ 𝐴 → ( 𝐴 ⊔ 1o ) ≺ 𝒫 𝐴 ) |