This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of continuous functions. -cn-> analogue of cnmpt11f . (Contributed by Mario Carneiro, 3-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfmpt1f.1 | |- ( ph -> F e. ( CC -cn-> CC ) ) |
|
| cncfmpt1f.2 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
||
| Assertion | cncfmpt1f | |- ( ph -> ( x e. X |-> ( F ` A ) ) e. ( X -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfmpt1f.1 | |- ( ph -> F e. ( CC -cn-> CC ) ) |
|
| 2 | cncfmpt1f.2 | |- ( ph -> ( x e. X |-> A ) e. ( X -cn-> CC ) ) |
|
| 3 | cncff | |- ( ( x e. X |-> A ) e. ( X -cn-> CC ) -> ( x e. X |-> A ) : X --> CC ) |
|
| 4 | 2 3 | syl | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 5 | eqid | |- ( x e. X |-> A ) = ( x e. X |-> A ) |
|
| 6 | 5 | fmpt | |- ( A. x e. X A e. CC <-> ( x e. X |-> A ) : X --> CC ) |
| 7 | 4 6 | sylibr | |- ( ph -> A. x e. X A e. CC ) |
| 8 | eqidd | |- ( ph -> ( x e. X |-> A ) = ( x e. X |-> A ) ) |
|
| 9 | cncff | |- ( F e. ( CC -cn-> CC ) -> F : CC --> CC ) |
|
| 10 | 1 9 | syl | |- ( ph -> F : CC --> CC ) |
| 11 | 10 | feqmptd | |- ( ph -> F = ( y e. CC |-> ( F ` y ) ) ) |
| 12 | fveq2 | |- ( y = A -> ( F ` y ) = ( F ` A ) ) |
|
| 13 | 7 8 11 12 | fmptcof | |- ( ph -> ( F o. ( x e. X |-> A ) ) = ( x e. X |-> ( F ` A ) ) ) |
| 14 | 2 1 | cncfco | |- ( ph -> ( F o. ( x e. X |-> A ) ) e. ( X -cn-> CC ) ) |
| 15 | 13 14 | eqeltrrd | |- ( ph -> ( x e. X |-> ( F ` A ) ) e. ( X -cn-> CC ) ) |