This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | tgioo2.1 | |- J = ( TopOpen ` CCfld ) |
|
| Assertion | tgioo2 | |- ( topGen ` ran (,) ) = ( J |`t RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgioo2.1 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 3 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 4 | ax-resscn | |- RR C_ CC |
|
| 5 | 1 | cnfldtopn | |- J = ( MetOpen ` ( abs o. - ) ) |
| 6 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 7 | 2 5 6 | metrest | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ RR C_ CC ) -> ( J |`t RR ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) ) |
| 8 | 3 4 7 | mp2an | |- ( J |`t RR ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 9 | 2 8 | tgioo | |- ( topGen ` ran (,) ) = ( J |`t RR ) |