This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absid | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
|
| 2 | 1 | recnd | |- ( ( A e. RR /\ 0 <_ A ) -> A e. CC ) |
| 3 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
| 5 | 1 | cjred | |- ( ( A e. RR /\ 0 <_ A ) -> ( * ` A ) = A ) |
| 6 | 5 | oveq2d | |- ( ( A e. RR /\ 0 <_ A ) -> ( A x. ( * ` A ) ) = ( A x. A ) ) |
| 7 | 2 | sqvald | |- ( ( A e. RR /\ 0 <_ A ) -> ( A ^ 2 ) = ( A x. A ) ) |
| 8 | 6 7 | eqtr4d | |- ( ( A e. RR /\ 0 <_ A ) -> ( A x. ( * ` A ) ) = ( A ^ 2 ) ) |
| 9 | 8 | fveq2d | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A x. ( * ` A ) ) ) = ( sqrt ` ( A ^ 2 ) ) ) |
| 10 | sqrtsq | |- ( ( A e. RR /\ 0 <_ A ) -> ( sqrt ` ( A ^ 2 ) ) = A ) |
|
| 11 | 4 9 10 | 3eqtrd | |- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |