This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of the exponential function. (Contributed by Mario Carneiro, 9-Aug-2014) (Proof shortened by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvef | |- ( CC _D exp ) = exp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvfcn | |- ( CC _D exp ) : dom ( CC _D exp ) --> CC |
|
| 2 | dvbsss | |- dom ( CC _D exp ) C_ CC |
|
| 3 | subcl | |- ( ( z e. CC /\ x e. CC ) -> ( z - x ) e. CC ) |
|
| 4 | 3 | ancoms | |- ( ( x e. CC /\ z e. CC ) -> ( z - x ) e. CC ) |
| 5 | efadd | |- ( ( x e. CC /\ ( z - x ) e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) |
|
| 6 | 4 5 | syldan | |- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) |
| 7 | pncan3 | |- ( ( x e. CC /\ z e. CC ) -> ( x + ( z - x ) ) = z ) |
|
| 8 | 7 | fveq2d | |- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( x + ( z - x ) ) ) = ( exp ` z ) ) |
| 9 | 6 8 | eqtr3d | |- ( ( x e. CC /\ z e. CC ) -> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) = ( exp ` z ) ) |
| 10 | 9 | mpteq2dva | |- ( x e. CC -> ( z e. CC |-> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) = ( z e. CC |-> ( exp ` z ) ) ) |
| 11 | cnex | |- CC e. _V |
|
| 12 | 11 | a1i | |- ( x e. CC -> CC e. _V ) |
| 13 | fvexd | |- ( ( x e. CC /\ z e. CC ) -> ( exp ` x ) e. _V ) |
|
| 14 | fvexd | |- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( z - x ) ) e. _V ) |
|
| 15 | fconstmpt | |- ( CC X. { ( exp ` x ) } ) = ( z e. CC |-> ( exp ` x ) ) |
|
| 16 | 15 | a1i | |- ( x e. CC -> ( CC X. { ( exp ` x ) } ) = ( z e. CC |-> ( exp ` x ) ) ) |
| 17 | eqidd | |- ( x e. CC -> ( z e. CC |-> ( exp ` ( z - x ) ) ) = ( z e. CC |-> ( exp ` ( z - x ) ) ) ) |
|
| 18 | 12 13 14 16 17 | offval2 | |- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) = ( z e. CC |-> ( ( exp ` x ) x. ( exp ` ( z - x ) ) ) ) ) |
| 19 | eff | |- exp : CC --> CC |
|
| 20 | 19 | a1i | |- ( x e. CC -> exp : CC --> CC ) |
| 21 | 20 | feqmptd | |- ( x e. CC -> exp = ( z e. CC |-> ( exp ` z ) ) ) |
| 22 | 10 18 21 | 3eqtr4d | |- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) = exp ) |
| 23 | 22 | oveq2d | |- ( x e. CC -> ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) = ( CC _D exp ) ) |
| 24 | efcl | |- ( x e. CC -> ( exp ` x ) e. CC ) |
|
| 25 | fconstg | |- ( ( exp ` x ) e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> { ( exp ` x ) } ) |
|
| 26 | 24 25 | syl | |- ( x e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> { ( exp ` x ) } ) |
| 27 | 24 | snssd | |- ( x e. CC -> { ( exp ` x ) } C_ CC ) |
| 28 | 26 27 | fssd | |- ( x e. CC -> ( CC X. { ( exp ` x ) } ) : CC --> CC ) |
| 29 | ssidd | |- ( x e. CC -> CC C_ CC ) |
|
| 30 | efcl | |- ( ( z - x ) e. CC -> ( exp ` ( z - x ) ) e. CC ) |
|
| 31 | 4 30 | syl | |- ( ( x e. CC /\ z e. CC ) -> ( exp ` ( z - x ) ) e. CC ) |
| 32 | 31 | fmpttd | |- ( x e. CC -> ( z e. CC |-> ( exp ` ( z - x ) ) ) : CC --> CC ) |
| 33 | c0ex | |- 0 e. _V |
|
| 34 | 33 | snid | |- 0 e. { 0 } |
| 35 | opelxpi | |- ( ( x e. CC /\ 0 e. { 0 } ) -> <. x , 0 >. e. ( CC X. { 0 } ) ) |
|
| 36 | 34 35 | mpan2 | |- ( x e. CC -> <. x , 0 >. e. ( CC X. { 0 } ) ) |
| 37 | dvconst | |- ( ( exp ` x ) e. CC -> ( CC _D ( CC X. { ( exp ` x ) } ) ) = ( CC X. { 0 } ) ) |
|
| 38 | 24 37 | syl | |- ( x e. CC -> ( CC _D ( CC X. { ( exp ` x ) } ) ) = ( CC X. { 0 } ) ) |
| 39 | 36 38 | eleqtrrd | |- ( x e. CC -> <. x , 0 >. e. ( CC _D ( CC X. { ( exp ` x ) } ) ) ) |
| 40 | df-br | |- ( x ( CC _D ( CC X. { ( exp ` x ) } ) ) 0 <-> <. x , 0 >. e. ( CC _D ( CC X. { ( exp ` x ) } ) ) ) |
|
| 41 | 39 40 | sylibr | |- ( x e. CC -> x ( CC _D ( CC X. { ( exp ` x ) } ) ) 0 ) |
| 42 | 20 4 | cofmpt | |- ( x e. CC -> ( exp o. ( z e. CC |-> ( z - x ) ) ) = ( z e. CC |-> ( exp ` ( z - x ) ) ) ) |
| 43 | 42 | oveq2d | |- ( x e. CC -> ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) = ( CC _D ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) |
| 44 | 4 | fmpttd | |- ( x e. CC -> ( z e. CC |-> ( z - x ) ) : CC --> CC ) |
| 45 | oveq1 | |- ( z = x -> ( z - x ) = ( x - x ) ) |
|
| 46 | eqid | |- ( z e. CC |-> ( z - x ) ) = ( z e. CC |-> ( z - x ) ) |
|
| 47 | ovex | |- ( x - x ) e. _V |
|
| 48 | 45 46 47 | fvmpt | |- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) = ( x - x ) ) |
| 49 | subid | |- ( x e. CC -> ( x - x ) = 0 ) |
|
| 50 | 48 49 | eqtrd | |- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) = 0 ) |
| 51 | dveflem | |- 0 ( CC _D exp ) 1 |
|
| 52 | 50 51 | eqbrtrdi | |- ( x e. CC -> ( ( z e. CC |-> ( z - x ) ) ` x ) ( CC _D exp ) 1 ) |
| 53 | 1ex | |- 1 e. _V |
|
| 54 | 53 | snid | |- 1 e. { 1 } |
| 55 | opelxpi | |- ( ( x e. CC /\ 1 e. { 1 } ) -> <. x , 1 >. e. ( CC X. { 1 } ) ) |
|
| 56 | 54 55 | mpan2 | |- ( x e. CC -> <. x , 1 >. e. ( CC X. { 1 } ) ) |
| 57 | cnelprrecn | |- CC e. { RR , CC } |
|
| 58 | 57 | a1i | |- ( x e. CC -> CC e. { RR , CC } ) |
| 59 | simpr | |- ( ( x e. CC /\ z e. CC ) -> z e. CC ) |
|
| 60 | 1cnd | |- ( ( x e. CC /\ z e. CC ) -> 1 e. CC ) |
|
| 61 | 58 | dvmptid | |- ( x e. CC -> ( CC _D ( z e. CC |-> z ) ) = ( z e. CC |-> 1 ) ) |
| 62 | simpl | |- ( ( x e. CC /\ z e. CC ) -> x e. CC ) |
|
| 63 | 0cnd | |- ( ( x e. CC /\ z e. CC ) -> 0 e. CC ) |
|
| 64 | id | |- ( x e. CC -> x e. CC ) |
|
| 65 | 58 64 | dvmptc | |- ( x e. CC -> ( CC _D ( z e. CC |-> x ) ) = ( z e. CC |-> 0 ) ) |
| 66 | 58 59 60 61 62 63 65 | dvmptsub | |- ( x e. CC -> ( CC _D ( z e. CC |-> ( z - x ) ) ) = ( z e. CC |-> ( 1 - 0 ) ) ) |
| 67 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 68 | 67 | mpteq2i | |- ( z e. CC |-> ( 1 - 0 ) ) = ( z e. CC |-> 1 ) |
| 69 | fconstmpt | |- ( CC X. { 1 } ) = ( z e. CC |-> 1 ) |
|
| 70 | 68 69 | eqtr4i | |- ( z e. CC |-> ( 1 - 0 ) ) = ( CC X. { 1 } ) |
| 71 | 66 70 | eqtrdi | |- ( x e. CC -> ( CC _D ( z e. CC |-> ( z - x ) ) ) = ( CC X. { 1 } ) ) |
| 72 | 56 71 | eleqtrrd | |- ( x e. CC -> <. x , 1 >. e. ( CC _D ( z e. CC |-> ( z - x ) ) ) ) |
| 73 | df-br | |- ( x ( CC _D ( z e. CC |-> ( z - x ) ) ) 1 <-> <. x , 1 >. e. ( CC _D ( z e. CC |-> ( z - x ) ) ) ) |
|
| 74 | 72 73 | sylibr | |- ( x e. CC -> x ( CC _D ( z e. CC |-> ( z - x ) ) ) 1 ) |
| 75 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 76 | 20 29 44 29 29 29 52 74 75 | dvcobr | |- ( x e. CC -> x ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) ( 1 x. 1 ) ) |
| 77 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 78 | 76 77 | breqtrdi | |- ( x e. CC -> x ( CC _D ( exp o. ( z e. CC |-> ( z - x ) ) ) ) 1 ) |
| 79 | 43 78 | breqdi | |- ( x e. CC -> x ( CC _D ( z e. CC |-> ( exp ` ( z - x ) ) ) ) 1 ) |
| 80 | 28 29 32 29 29 41 79 75 | dvmulbr | |- ( x e. CC -> x ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) ) |
| 81 | 32 64 | ffvelcdmd | |- ( x e. CC -> ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) e. CC ) |
| 82 | 81 | mul02d | |- ( x e. CC -> ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) = 0 ) |
| 83 | fvex | |- ( exp ` x ) e. _V |
|
| 84 | 83 | fvconst2 | |- ( x e. CC -> ( ( CC X. { ( exp ` x ) } ) ` x ) = ( exp ` x ) ) |
| 85 | 84 | oveq2d | |- ( x e. CC -> ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) = ( 1 x. ( exp ` x ) ) ) |
| 86 | 24 | mullidd | |- ( x e. CC -> ( 1 x. ( exp ` x ) ) = ( exp ` x ) ) |
| 87 | 85 86 | eqtrd | |- ( x e. CC -> ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) = ( exp ` x ) ) |
| 88 | 82 87 | oveq12d | |- ( x e. CC -> ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) = ( 0 + ( exp ` x ) ) ) |
| 89 | 24 | addlidd | |- ( x e. CC -> ( 0 + ( exp ` x ) ) = ( exp ` x ) ) |
| 90 | 88 89 | eqtrd | |- ( x e. CC -> ( ( 0 x. ( ( z e. CC |-> ( exp ` ( z - x ) ) ) ` x ) ) + ( 1 x. ( ( CC X. { ( exp ` x ) } ) ` x ) ) ) = ( exp ` x ) ) |
| 91 | 80 90 | breqtrd | |- ( x e. CC -> x ( CC _D ( ( CC X. { ( exp ` x ) } ) oF x. ( z e. CC |-> ( exp ` ( z - x ) ) ) ) ) ( exp ` x ) ) |
| 92 | 23 91 | breqdi | |- ( x e. CC -> x ( CC _D exp ) ( exp ` x ) ) |
| 93 | vex | |- x e. _V |
|
| 94 | 93 83 | breldm | |- ( x ( CC _D exp ) ( exp ` x ) -> x e. dom ( CC _D exp ) ) |
| 95 | 92 94 | syl | |- ( x e. CC -> x e. dom ( CC _D exp ) ) |
| 96 | 95 | ssriv | |- CC C_ dom ( CC _D exp ) |
| 97 | 2 96 | eqssi | |- dom ( CC _D exp ) = CC |
| 98 | 97 | feq2i | |- ( ( CC _D exp ) : dom ( CC _D exp ) --> CC <-> ( CC _D exp ) : CC --> CC ) |
| 99 | 1 98 | mpbi | |- ( CC _D exp ) : CC --> CC |
| 100 | 99 | a1i | |- ( T. -> ( CC _D exp ) : CC --> CC ) |
| 101 | 100 | feqmptd | |- ( T. -> ( CC _D exp ) = ( x e. CC |-> ( ( CC _D exp ) ` x ) ) ) |
| 102 | ffun | |- ( ( CC _D exp ) : dom ( CC _D exp ) --> CC -> Fun ( CC _D exp ) ) |
|
| 103 | 1 102 | ax-mp | |- Fun ( CC _D exp ) |
| 104 | funbrfv | |- ( Fun ( CC _D exp ) -> ( x ( CC _D exp ) ( exp ` x ) -> ( ( CC _D exp ) ` x ) = ( exp ` x ) ) ) |
|
| 105 | 103 92 104 | mpsyl | |- ( x e. CC -> ( ( CC _D exp ) ` x ) = ( exp ` x ) ) |
| 106 | 105 | mpteq2ia | |- ( x e. CC |-> ( ( CC _D exp ) ` x ) ) = ( x e. CC |-> ( exp ` x ) ) |
| 107 | 101 106 | eqtrdi | |- ( T. -> ( CC _D exp ) = ( x e. CC |-> ( exp ` x ) ) ) |
| 108 | 19 | a1i | |- ( T. -> exp : CC --> CC ) |
| 109 | 108 | feqmptd | |- ( T. -> exp = ( x e. CC |-> ( exp ` x ) ) ) |
| 110 | 107 109 | eqtr4d | |- ( T. -> ( CC _D exp ) = exp ) |
| 111 | 110 | mptru | |- ( CC _D exp ) = exp |