This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain and codomain of the exponential function. (Contributed by Paul Chapman, 22-Oct-2007) (Proof shortened by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eff | |- exp : CC --> CC |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ef | |- exp = ( x e. CC |-> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) ) |
|
| 2 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 3 | 0zd | |- ( x e. CC -> 0 e. ZZ ) |
|
| 4 | eqid | |- ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) |
|
| 5 | 4 | eftval | |- ( k e. NN0 -> ( ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( x ^ k ) / ( ! ` k ) ) ) |
| 6 | 5 | adantl | |- ( ( x e. CC /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) ` k ) = ( ( x ^ k ) / ( ! ` k ) ) ) |
| 7 | eftcl | |- ( ( x e. CC /\ k e. NN0 ) -> ( ( x ^ k ) / ( ! ` k ) ) e. CC ) |
|
| 8 | 4 | efcllem | |- ( x e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( x ^ n ) / ( ! ` n ) ) ) ) e. dom ~~> ) |
| 9 | 2 3 6 7 8 | isumcl | |- ( x e. CC -> sum_ k e. NN0 ( ( x ^ k ) / ( ! ` k ) ) e. CC ) |
| 10 | 1 9 | fmpti | |- exp : CC --> CC |