This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for negative of reals. (Note: this inference proof style and the deduction theorem usage in renegcl is deprecated, but is retained for its demonstration value.) (Contributed by NM, 17-Jan-1997) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | renegcl.1 | |- A e. RR |
|
| Assertion | renegcli | |- -u A e. RR |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcl.1 | |- A e. RR |
|
| 2 | ax-rnegex | |- ( A e. RR -> E. x e. RR ( A + x ) = 0 ) |
|
| 3 | recn | |- ( x e. RR -> x e. CC ) |
|
| 4 | df-neg | |- -u A = ( 0 - A ) |
|
| 5 | 4 | eqeq1i | |- ( -u A = x <-> ( 0 - A ) = x ) |
| 6 | 0cn | |- 0 e. CC |
|
| 7 | 1 | recni | |- A e. CC |
| 8 | subadd | |- ( ( 0 e. CC /\ A e. CC /\ x e. CC ) -> ( ( 0 - A ) = x <-> ( A + x ) = 0 ) ) |
|
| 9 | 6 7 8 | mp3an12 | |- ( x e. CC -> ( ( 0 - A ) = x <-> ( A + x ) = 0 ) ) |
| 10 | 5 9 | bitrid | |- ( x e. CC -> ( -u A = x <-> ( A + x ) = 0 ) ) |
| 11 | 3 10 | syl | |- ( x e. RR -> ( -u A = x <-> ( A + x ) = 0 ) ) |
| 12 | eleq1a | |- ( x e. RR -> ( -u A = x -> -u A e. RR ) ) |
|
| 13 | 11 12 | sylbird | |- ( x e. RR -> ( ( A + x ) = 0 -> -u A e. RR ) ) |
| 14 | 13 | rexlimiv | |- ( E. x e. RR ( A + x ) = 0 -> -u A e. RR ) |
| 15 | 1 2 14 | mp2b | |- -u A e. RR |