This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of sine has period _pi . (Contributed by NM, 17-Aug-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abssinper | |- ( ( A e. CC /\ K e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 2 | halfcl | |- ( K e. CC -> ( K / 2 ) e. CC ) |
|
| 3 | 2cn | |- 2 e. CC |
|
| 4 | picn | |- _pi e. CC |
|
| 5 | mulass | |- ( ( ( K / 2 ) e. CC /\ 2 e. CC /\ _pi e. CC ) -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
|
| 6 | 3 4 5 | mp3an23 | |- ( ( K / 2 ) e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
| 7 | 2 6 | syl | |- ( K e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( ( K / 2 ) x. ( 2 x. _pi ) ) ) |
| 8 | 2ne0 | |- 2 =/= 0 |
|
| 9 | divcan1 | |- ( ( K e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( K / 2 ) x. 2 ) = K ) |
|
| 10 | 3 8 9 | mp3an23 | |- ( K e. CC -> ( ( K / 2 ) x. 2 ) = K ) |
| 11 | 10 | oveq1d | |- ( K e. CC -> ( ( ( K / 2 ) x. 2 ) x. _pi ) = ( K x. _pi ) ) |
| 12 | 7 11 | eqtr3d | |- ( K e. CC -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
| 13 | 1 12 | syl | |- ( K e. ZZ -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
| 14 | 13 | adantl | |- ( ( A e. CC /\ K e. ZZ ) -> ( ( K / 2 ) x. ( 2 x. _pi ) ) = ( K x. _pi ) ) |
| 15 | 14 | oveq2d | |- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( K x. _pi ) ) ) |
| 16 | 15 | fveq2d | |- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A + ( K x. _pi ) ) ) ) |
| 17 | 16 | eqcomd | |- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 18 | 17 | adantr | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 19 | sinper | |- ( ( A e. CC /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` A ) ) |
|
| 20 | 19 | adantlr | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( ( K / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` A ) ) |
| 21 | 18 20 | eqtrd | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` A ) ) |
| 22 | 21 | fveq2d | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( K / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
| 23 | peano2cn | |- ( K e. CC -> ( K + 1 ) e. CC ) |
|
| 24 | halfcl | |- ( ( K + 1 ) e. CC -> ( ( K + 1 ) / 2 ) e. CC ) |
|
| 25 | 23 24 | syl | |- ( K e. CC -> ( ( K + 1 ) / 2 ) e. CC ) |
| 26 | 3 4 | mulcli | |- ( 2 x. _pi ) e. CC |
| 27 | mulcl | |- ( ( ( ( K + 1 ) / 2 ) e. CC /\ ( 2 x. _pi ) e. CC ) -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) |
|
| 28 | 25 26 27 | sylancl | |- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) |
| 29 | subadd23 | |- ( ( A e. CC /\ _pi e. CC /\ ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
|
| 30 | 4 29 | mp3an2 | |- ( ( A e. CC /\ ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
| 31 | 28 30 | sylan2 | |- ( ( A e. CC /\ K e. CC ) -> ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) = ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) ) |
| 32 | divcan1 | |- ( ( ( K + 1 ) e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
|
| 33 | 3 8 32 | mp3an23 | |- ( ( K + 1 ) e. CC -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
| 34 | 23 33 | syl | |- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. 2 ) = ( K + 1 ) ) |
| 35 | 34 | oveq1d | |- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( K + 1 ) x. _pi ) ) |
| 36 | ax-1cn | |- 1 e. CC |
|
| 37 | adddir | |- ( ( K e. CC /\ 1 e. CC /\ _pi e. CC ) -> ( ( K + 1 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
|
| 38 | 36 4 37 | mp3an23 | |- ( K e. CC -> ( ( K + 1 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
| 39 | 35 38 | eqtrd | |- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( K x. _pi ) + ( 1 x. _pi ) ) ) |
| 40 | 4 | mullidi | |- ( 1 x. _pi ) = _pi |
| 41 | 40 | oveq2i | |- ( ( K x. _pi ) + ( 1 x. _pi ) ) = ( ( K x. _pi ) + _pi ) |
| 42 | 39 41 | eqtr2di | |- ( K e. CC -> ( ( K x. _pi ) + _pi ) = ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) ) |
| 43 | mulass | |- ( ( ( ( K + 1 ) / 2 ) e. CC /\ 2 e. CC /\ _pi e. CC ) -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
|
| 44 | 3 4 43 | mp3an23 | |- ( ( ( K + 1 ) / 2 ) e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
| 45 | 25 44 | syl | |- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. 2 ) x. _pi ) = ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) |
| 46 | 42 45 | eqtr2d | |- ( K e. CC -> ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) = ( ( K x. _pi ) + _pi ) ) |
| 47 | 46 | oveq1d | |- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( ( ( K x. _pi ) + _pi ) - _pi ) ) |
| 48 | mulcl | |- ( ( K e. CC /\ _pi e. CC ) -> ( K x. _pi ) e. CC ) |
|
| 49 | 4 48 | mpan2 | |- ( K e. CC -> ( K x. _pi ) e. CC ) |
| 50 | pncan | |- ( ( ( K x. _pi ) e. CC /\ _pi e. CC ) -> ( ( ( K x. _pi ) + _pi ) - _pi ) = ( K x. _pi ) ) |
|
| 51 | 49 4 50 | sylancl | |- ( K e. CC -> ( ( ( K x. _pi ) + _pi ) - _pi ) = ( K x. _pi ) ) |
| 52 | 47 51 | eqtrd | |- ( K e. CC -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( K x. _pi ) ) |
| 53 | 52 | adantl | |- ( ( A e. CC /\ K e. CC ) -> ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) = ( K x. _pi ) ) |
| 54 | 53 | oveq2d | |- ( ( A e. CC /\ K e. CC ) -> ( A + ( ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) - _pi ) ) = ( A + ( K x. _pi ) ) ) |
| 55 | 31 54 | eqtr2d | |- ( ( A e. CC /\ K e. CC ) -> ( A + ( K x. _pi ) ) = ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) |
| 56 | 1 55 | sylan2 | |- ( ( A e. CC /\ K e. ZZ ) -> ( A + ( K x. _pi ) ) = ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) |
| 57 | 56 | fveq2d | |- ( ( A e. CC /\ K e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 58 | 57 | adantr | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) ) |
| 59 | subcl | |- ( ( A e. CC /\ _pi e. CC ) -> ( A - _pi ) e. CC ) |
|
| 60 | 4 59 | mpan2 | |- ( A e. CC -> ( A - _pi ) e. CC ) |
| 61 | sinper | |- ( ( ( A - _pi ) e. CC /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
|
| 62 | 60 61 | sylan | |- ( ( A e. CC /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
| 63 | 62 | adantlr | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = ( sin ` ( A - _pi ) ) ) |
| 64 | sinmpi | |- ( A e. CC -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
|
| 65 | 64 | ad2antrr | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A - _pi ) ) = -u ( sin ` A ) ) |
| 66 | 63 65 | eqtrd | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( ( A - _pi ) + ( ( ( K + 1 ) / 2 ) x. ( 2 x. _pi ) ) ) ) = -u ( sin ` A ) ) |
| 67 | 58 66 | eqtrd | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( sin ` ( A + ( K x. _pi ) ) ) = -u ( sin ` A ) ) |
| 68 | 67 | fveq2d | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` -u ( sin ` A ) ) ) |
| 69 | sincl | |- ( A e. CC -> ( sin ` A ) e. CC ) |
|
| 70 | 69 | absnegd | |- ( A e. CC -> ( abs ` -u ( sin ` A ) ) = ( abs ` ( sin ` A ) ) ) |
| 71 | 70 | ad2antrr | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` -u ( sin ` A ) ) = ( abs ` ( sin ` A ) ) ) |
| 72 | 68 71 | eqtrd | |- ( ( ( A e. CC /\ K e. ZZ ) /\ ( ( K + 1 ) / 2 ) e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |
| 73 | zeo | |- ( K e. ZZ -> ( ( K / 2 ) e. ZZ \/ ( ( K + 1 ) / 2 ) e. ZZ ) ) |
|
| 74 | 73 | adantl | |- ( ( A e. CC /\ K e. ZZ ) -> ( ( K / 2 ) e. ZZ \/ ( ( K + 1 ) / 2 ) e. ZZ ) ) |
| 75 | 22 72 74 | mpjaodan | |- ( ( A e. CC /\ K e. ZZ ) -> ( abs ` ( sin ` ( A + ( K x. _pi ) ) ) ) = ( abs ` ( sin ` A ) ) ) |