This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptres3.j | |- J = ( TopOpen ` CCfld ) |
|
| dvmptres3.s | |- ( ph -> S e. { RR , CC } ) |
||
| dvmptres3.x | |- ( ph -> X e. J ) |
||
| dvmptres3.y | |- ( ph -> ( S i^i X ) = Y ) |
||
| dvmptres3.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptres3.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptres3.d | |- ( ph -> ( CC _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| Assertion | dvmptres3 | |- ( ph -> ( S _D ( x e. Y |-> A ) ) = ( x e. Y |-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptres3.j | |- J = ( TopOpen ` CCfld ) |
|
| 2 | dvmptres3.s | |- ( ph -> S e. { RR , CC } ) |
|
| 3 | dvmptres3.x | |- ( ph -> X e. J ) |
|
| 4 | dvmptres3.y | |- ( ph -> ( S i^i X ) = Y ) |
|
| 5 | dvmptres3.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 6 | dvmptres3.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 7 | dvmptres3.d | |- ( ph -> ( CC _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 8 | 5 | fmpttd | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 9 | 7 | dmeqd | |- ( ph -> dom ( CC _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 10 | eqid | |- ( x e. X |-> B ) = ( x e. X |-> B ) |
|
| 11 | 10 6 | dmmptd | |- ( ph -> dom ( x e. X |-> B ) = X ) |
| 12 | 9 11 | eqtrd | |- ( ph -> dom ( CC _D ( x e. X |-> A ) ) = X ) |
| 13 | 1 | dvres3a | |- ( ( ( S e. { RR , CC } /\ ( x e. X |-> A ) : X --> CC ) /\ ( X e. J /\ dom ( CC _D ( x e. X |-> A ) ) = X ) ) -> ( S _D ( ( x e. X |-> A ) |` S ) ) = ( ( CC _D ( x e. X |-> A ) ) |` S ) ) |
| 14 | 2 8 3 12 13 | syl22anc | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` S ) ) = ( ( CC _D ( x e. X |-> A ) ) |` S ) ) |
| 15 | rescom | |- ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( ( x e. X |-> A ) |` S ) |` X ) |
|
| 16 | resres | |- ( ( ( x e. X |-> A ) |` S ) |` X ) = ( ( x e. X |-> A ) |` ( S i^i X ) ) |
|
| 17 | 15 16 | eqtri | |- ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( x e. X |-> A ) |` ( S i^i X ) ) |
| 18 | 4 | reseq2d | |- ( ph -> ( ( x e. X |-> A ) |` ( S i^i X ) ) = ( ( x e. X |-> A ) |` Y ) ) |
| 19 | 17 18 | eqtrid | |- ( ph -> ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( x e. X |-> A ) |` Y ) ) |
| 20 | ffn | |- ( ( x e. X |-> A ) : X --> CC -> ( x e. X |-> A ) Fn X ) |
|
| 21 | fnresdm | |- ( ( x e. X |-> A ) Fn X -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
|
| 22 | 8 20 21 | 3syl | |- ( ph -> ( ( x e. X |-> A ) |` X ) = ( x e. X |-> A ) ) |
| 23 | 22 | reseq1d | |- ( ph -> ( ( ( x e. X |-> A ) |` X ) |` S ) = ( ( x e. X |-> A ) |` S ) ) |
| 24 | inss2 | |- ( S i^i X ) C_ X |
|
| 25 | 4 24 | eqsstrrdi | |- ( ph -> Y C_ X ) |
| 26 | 25 | resmptd | |- ( ph -> ( ( x e. X |-> A ) |` Y ) = ( x e. Y |-> A ) ) |
| 27 | 19 23 26 | 3eqtr3d | |- ( ph -> ( ( x e. X |-> A ) |` S ) = ( x e. Y |-> A ) ) |
| 28 | 27 | oveq2d | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` S ) ) = ( S _D ( x e. Y |-> A ) ) ) |
| 29 | rescom | |- ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( ( x e. X |-> B ) |` S ) |` X ) |
|
| 30 | resres | |- ( ( ( x e. X |-> B ) |` S ) |` X ) = ( ( x e. X |-> B ) |` ( S i^i X ) ) |
|
| 31 | 29 30 | eqtri | |- ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( x e. X |-> B ) |` ( S i^i X ) ) |
| 32 | 4 | reseq2d | |- ( ph -> ( ( x e. X |-> B ) |` ( S i^i X ) ) = ( ( x e. X |-> B ) |` Y ) ) |
| 33 | 31 32 | eqtrid | |- ( ph -> ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( x e. X |-> B ) |` Y ) ) |
| 34 | 6 | ralrimiva | |- ( ph -> A. x e. X B e. V ) |
| 35 | 10 | fnmpt | |- ( A. x e. X B e. V -> ( x e. X |-> B ) Fn X ) |
| 36 | fnresdm | |- ( ( x e. X |-> B ) Fn X -> ( ( x e. X |-> B ) |` X ) = ( x e. X |-> B ) ) |
|
| 37 | 34 35 36 | 3syl | |- ( ph -> ( ( x e. X |-> B ) |` X ) = ( x e. X |-> B ) ) |
| 38 | 37 7 | eqtr4d | |- ( ph -> ( ( x e. X |-> B ) |` X ) = ( CC _D ( x e. X |-> A ) ) ) |
| 39 | 38 | reseq1d | |- ( ph -> ( ( ( x e. X |-> B ) |` X ) |` S ) = ( ( CC _D ( x e. X |-> A ) ) |` S ) ) |
| 40 | 25 | resmptd | |- ( ph -> ( ( x e. X |-> B ) |` Y ) = ( x e. Y |-> B ) ) |
| 41 | 33 39 40 | 3eqtr3d | |- ( ph -> ( ( CC _D ( x e. X |-> A ) ) |` S ) = ( x e. Y |-> B ) ) |
| 42 | 14 28 41 | 3eqtr3d | |- ( ph -> ( S _D ( x e. Y |-> A ) ) = ( x e. Y |-> B ) ) |