This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the exponential function at 0. Equation 2 of Gleason p. 308. (Contributed by Steve Rodriguez, 27-Jun-2006) (Revised by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ef0 | |- ( exp ` 0 ) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn | |- 0 e. CC |
|
| 2 | eqid | |- ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) = ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) |
|
| 3 | 2 | efcvg | |- ( 0 e. CC -> seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` 0 ) ) |
| 4 | 1 3 | ax-mp | |- seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` 0 ) |
| 5 | eqid | |- 0 = 0 |
|
| 6 | 2 | ef0lem | |- ( 0 = 0 -> seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> 1 ) |
| 7 | 5 6 | ax-mp | |- seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> 1 |
| 8 | climuni | |- ( ( seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> ( exp ` 0 ) /\ seq 0 ( + , ( n e. NN0 |-> ( ( 0 ^ n ) / ( ! ` n ) ) ) ) ~~> 1 ) -> ( exp ` 0 ) = 1 ) |
|
| 9 | 4 7 8 | mp2an | |- ( exp ` 0 ) = 1 |