This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rpdivcl | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A / B ) e. RR+ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpre | |- ( A e. RR+ -> A e. RR ) |
|
| 2 | rprene0 | |- ( B e. RR+ -> ( B e. RR /\ B =/= 0 ) ) |
|
| 3 | redivcl | |- ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) |
|
| 4 | 3 | 3expb | |- ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( A / B ) e. RR ) |
| 5 | 1 2 4 | syl2an | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 6 | elrp | |- ( A e. RR+ <-> ( A e. RR /\ 0 < A ) ) |
|
| 7 | elrp | |- ( B e. RR+ <-> ( B e. RR /\ 0 < B ) ) |
|
| 8 | divgt0 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A / B ) ) |
|
| 9 | 6 7 8 | syl2anb | |- ( ( A e. RR+ /\ B e. RR+ ) -> 0 < ( A / B ) ) |
| 10 | elrp | |- ( ( A / B ) e. RR+ <-> ( ( A / B ) e. RR /\ 0 < ( A / B ) ) ) |
|
| 11 | 5 9 10 | sylanbrc | |- ( ( A e. RR+ /\ B e. RR+ ) -> ( A / B ) e. RR+ ) |