This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative: restrict a derivative to a subset. (Contributed by Mario Carneiro, 1-Sep-2014) (Revised by Mario Carneiro, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| dvmptres2.z | |- ( ph -> Z C_ X ) |
||
| dvmptres2.j | |- J = ( K |`t S ) |
||
| dvmptres2.k | |- K = ( TopOpen ` CCfld ) |
||
| dvmptres2.i | |- ( ph -> ( ( int ` J ) ` Z ) = Y ) |
||
| Assertion | dvmptres2 | |- ( ph -> ( S _D ( x e. Z |-> A ) ) = ( x e. Y |-> B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | dvmptres2.z | |- ( ph -> Z C_ X ) |
|
| 6 | dvmptres2.j | |- J = ( K |`t S ) |
|
| 7 | dvmptres2.k | |- K = ( TopOpen ` CCfld ) |
|
| 8 | dvmptres2.i | |- ( ph -> ( ( int ` J ) ` Z ) = Y ) |
|
| 9 | recnprss | |- ( S e. { RR , CC } -> S C_ CC ) |
|
| 10 | 1 9 | syl | |- ( ph -> S C_ CC ) |
| 11 | 2 | fmpttd | |- ( ph -> ( x e. X |-> A ) : X --> CC ) |
| 12 | 4 | dmeqd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = dom ( x e. X |-> B ) ) |
| 13 | 3 | ralrimiva | |- ( ph -> A. x e. X B e. V ) |
| 14 | dmmptg | |- ( A. x e. X B e. V -> dom ( x e. X |-> B ) = X ) |
|
| 15 | 13 14 | syl | |- ( ph -> dom ( x e. X |-> B ) = X ) |
| 16 | 12 15 | eqtrd | |- ( ph -> dom ( S _D ( x e. X |-> A ) ) = X ) |
| 17 | dvbsss | |- dom ( S _D ( x e. X |-> A ) ) C_ S |
|
| 18 | 16 17 | eqsstrrdi | |- ( ph -> X C_ S ) |
| 19 | 5 18 | sstrd | |- ( ph -> Z C_ S ) |
| 20 | 7 6 | dvres | |- ( ( ( S C_ CC /\ ( x e. X |-> A ) : X --> CC ) /\ ( X C_ S /\ Z C_ S ) ) -> ( S _D ( ( x e. X |-> A ) |` Z ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) ) |
| 21 | 10 11 18 19 20 | syl22anc | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` Z ) ) = ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) ) |
| 22 | 5 | resmptd | |- ( ph -> ( ( x e. X |-> A ) |` Z ) = ( x e. Z |-> A ) ) |
| 23 | 22 | oveq2d | |- ( ph -> ( S _D ( ( x e. X |-> A ) |` Z ) ) = ( S _D ( x e. Z |-> A ) ) ) |
| 24 | 4 | reseq1d | |- ( ph -> ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) = ( ( x e. X |-> B ) |` ( ( int ` J ) ` Z ) ) ) |
| 25 | 8 | reseq2d | |- ( ph -> ( ( x e. X |-> B ) |` ( ( int ` J ) ` Z ) ) = ( ( x e. X |-> B ) |` Y ) ) |
| 26 | 7 | cnfldtopon | |- K e. ( TopOn ` CC ) |
| 27 | resttopon | |- ( ( K e. ( TopOn ` CC ) /\ S C_ CC ) -> ( K |`t S ) e. ( TopOn ` S ) ) |
|
| 28 | 26 10 27 | sylancr | |- ( ph -> ( K |`t S ) e. ( TopOn ` S ) ) |
| 29 | 6 28 | eqeltrid | |- ( ph -> J e. ( TopOn ` S ) ) |
| 30 | topontop | |- ( J e. ( TopOn ` S ) -> J e. Top ) |
|
| 31 | 29 30 | syl | |- ( ph -> J e. Top ) |
| 32 | toponuni | |- ( J e. ( TopOn ` S ) -> S = U. J ) |
|
| 33 | 29 32 | syl | |- ( ph -> S = U. J ) |
| 34 | 19 33 | sseqtrd | |- ( ph -> Z C_ U. J ) |
| 35 | eqid | |- U. J = U. J |
|
| 36 | 35 | ntrss2 | |- ( ( J e. Top /\ Z C_ U. J ) -> ( ( int ` J ) ` Z ) C_ Z ) |
| 37 | 31 34 36 | syl2anc | |- ( ph -> ( ( int ` J ) ` Z ) C_ Z ) |
| 38 | 8 37 | eqsstrrd | |- ( ph -> Y C_ Z ) |
| 39 | 38 5 | sstrd | |- ( ph -> Y C_ X ) |
| 40 | 39 | resmptd | |- ( ph -> ( ( x e. X |-> B ) |` Y ) = ( x e. Y |-> B ) ) |
| 41 | 24 25 40 | 3eqtrd | |- ( ph -> ( ( S _D ( x e. X |-> A ) ) |` ( ( int ` J ) ` Z ) ) = ( x e. Y |-> B ) ) |
| 42 | 21 23 41 | 3eqtr3d | |- ( ph -> ( S _D ( x e. Z |-> A ) ) = ( x e. Y |-> B ) ) |