This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The absolute value of the exponential of an imaginary number is one. Equation 48 of Rudin p. 167. (Contributed by Jason Orendorff, 9-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absefi | |- ( A e. RR -> ( abs ` ( exp ` ( _i x. A ) ) ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( A e. RR -> A e. CC ) |
|
| 2 | efival | |- ( A e. CC -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. RR -> ( exp ` ( _i x. A ) ) = ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) |
| 4 | 3 | fveq2d | |- ( A e. RR -> ( abs ` ( exp ` ( _i x. A ) ) ) = ( abs ` ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) ) |
| 5 | recoscl | |- ( A e. RR -> ( cos ` A ) e. RR ) |
|
| 6 | resincl | |- ( A e. RR -> ( sin ` A ) e. RR ) |
|
| 7 | absreim | |- ( ( ( cos ` A ) e. RR /\ ( sin ` A ) e. RR ) -> ( abs ` ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( sqrt ` ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) ) |
|
| 8 | 5 6 7 | syl2anc | |- ( A e. RR -> ( abs ` ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = ( sqrt ` ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) ) |
| 9 | 5 | resqcld | |- ( A e. RR -> ( ( cos ` A ) ^ 2 ) e. RR ) |
| 10 | 9 | recnd | |- ( A e. RR -> ( ( cos ` A ) ^ 2 ) e. CC ) |
| 11 | 6 | resqcld | |- ( A e. RR -> ( ( sin ` A ) ^ 2 ) e. RR ) |
| 12 | 11 | recnd | |- ( A e. RR -> ( ( sin ` A ) ^ 2 ) e. CC ) |
| 13 | 10 12 | addcomd | |- ( A e. RR -> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) ) |
| 14 | sincossq | |- ( A e. CC -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
|
| 15 | 1 14 | syl | |- ( A e. RR -> ( ( ( sin ` A ) ^ 2 ) + ( ( cos ` A ) ^ 2 ) ) = 1 ) |
| 16 | 13 15 | eqtrd | |- ( A e. RR -> ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) = 1 ) |
| 17 | 16 | fveq2d | |- ( A e. RR -> ( sqrt ` ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) = ( sqrt ` 1 ) ) |
| 18 | sqrt1 | |- ( sqrt ` 1 ) = 1 |
|
| 19 | 17 18 | eqtrdi | |- ( A e. RR -> ( sqrt ` ( ( ( cos ` A ) ^ 2 ) + ( ( sin ` A ) ^ 2 ) ) ) = 1 ) |
| 20 | 8 19 | eqtrd | |- ( A e. RR -> ( abs ` ( ( cos ` A ) + ( _i x. ( sin ` A ) ) ) ) = 1 ) |
| 21 | 4 20 | eqtrd | |- ( A e. RR -> ( abs ` ( exp ` ( _i x. A ) ) ) = 1 ) |