This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value distributes over multiplication. Proposition 10-3.7(f) of Gleason p. 133. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | absmul | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. B ) ) = ( ( abs ` A ) x. ( abs ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjmul | |- ( ( A e. CC /\ B e. CC ) -> ( * ` ( A x. B ) ) = ( ( * ` A ) x. ( * ` B ) ) ) |
|
| 2 | 1 | oveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. ( * ` ( A x. B ) ) ) = ( ( A x. B ) x. ( ( * ` A ) x. ( * ` B ) ) ) ) |
| 3 | simpl | |- ( ( A e. CC /\ B e. CC ) -> A e. CC ) |
|
| 4 | simpr | |- ( ( A e. CC /\ B e. CC ) -> B e. CC ) |
|
| 5 | 3 | cjcld | |- ( ( A e. CC /\ B e. CC ) -> ( * ` A ) e. CC ) |
| 6 | 4 | cjcld | |- ( ( A e. CC /\ B e. CC ) -> ( * ` B ) e. CC ) |
| 7 | 3 4 5 6 | mul4d | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. ( ( * ` A ) x. ( * ` B ) ) ) = ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) |
| 8 | 2 7 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( ( A x. B ) x. ( * ` ( A x. B ) ) ) = ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) |
| 9 | 8 | fveq2d | |- ( ( A e. CC /\ B e. CC ) -> ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) = ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) ) |
| 10 | cjmulrcl | |- ( A e. CC -> ( A x. ( * ` A ) ) e. RR ) |
|
| 11 | cjmulge0 | |- ( A e. CC -> 0 <_ ( A x. ( * ` A ) ) ) |
|
| 12 | 10 11 | jca | |- ( A e. CC -> ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) ) |
| 13 | cjmulrcl | |- ( B e. CC -> ( B x. ( * ` B ) ) e. RR ) |
|
| 14 | cjmulge0 | |- ( B e. CC -> 0 <_ ( B x. ( * ` B ) ) ) |
|
| 15 | 13 14 | jca | |- ( B e. CC -> ( ( B x. ( * ` B ) ) e. RR /\ 0 <_ ( B x. ( * ` B ) ) ) ) |
| 16 | sqrtmul | |- ( ( ( ( A x. ( * ` A ) ) e. RR /\ 0 <_ ( A x. ( * ` A ) ) ) /\ ( ( B x. ( * ` B ) ) e. RR /\ 0 <_ ( B x. ( * ` B ) ) ) ) -> ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
|
| 17 | 12 15 16 | syl2an | |- ( ( A e. CC /\ B e. CC ) -> ( sqrt ` ( ( A x. ( * ` A ) ) x. ( B x. ( * ` B ) ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
| 18 | 9 17 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
| 19 | mulcl | |- ( ( A e. CC /\ B e. CC ) -> ( A x. B ) e. CC ) |
|
| 20 | absval | |- ( ( A x. B ) e. CC -> ( abs ` ( A x. B ) ) = ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) ) |
|
| 21 | 19 20 | syl | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. B ) ) = ( sqrt ` ( ( A x. B ) x. ( * ` ( A x. B ) ) ) ) ) |
| 22 | absval | |- ( A e. CC -> ( abs ` A ) = ( sqrt ` ( A x. ( * ` A ) ) ) ) |
|
| 23 | absval | |- ( B e. CC -> ( abs ` B ) = ( sqrt ` ( B x. ( * ` B ) ) ) ) |
|
| 24 | 22 23 | oveqan12d | |- ( ( A e. CC /\ B e. CC ) -> ( ( abs ` A ) x. ( abs ` B ) ) = ( ( sqrt ` ( A x. ( * ` A ) ) ) x. ( sqrt ` ( B x. ( * ` B ) ) ) ) ) |
| 25 | 18 21 24 | 3eqtr4d | |- ( ( A e. CC /\ B e. CC ) -> ( abs ` ( A x. B ) ) = ( ( abs ` A ) x. ( abs ` B ) ) ) |