This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lhop1 . (Contributed by Mario Carneiro, 29-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lhop1.a | |- ( ph -> A e. RR ) |
|
| lhop1.b | |- ( ph -> B e. RR* ) |
||
| lhop1.l | |- ( ph -> A < B ) |
||
| lhop1.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
||
| lhop1.g | |- ( ph -> G : ( A (,) B ) --> RR ) |
||
| lhop1.if | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
||
| lhop1.ig | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
||
| lhop1.f0 | |- ( ph -> 0 e. ( F limCC A ) ) |
||
| lhop1.g0 | |- ( ph -> 0 e. ( G limCC A ) ) |
||
| lhop1.gn0 | |- ( ph -> -. 0 e. ran G ) |
||
| lhop1.gd0 | |- ( ph -> -. 0 e. ran ( RR _D G ) ) |
||
| lhop1.c | |- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) ) |
||
| lhop1lem.e | |- ( ph -> E e. RR+ ) |
||
| lhop1lem.d | |- ( ph -> D e. RR ) |
||
| lhop1lem.db | |- ( ph -> D <_ B ) |
||
| lhop1lem.x | |- ( ph -> X e. ( A (,) D ) ) |
||
| lhop1lem.t | |- ( ph -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E ) |
||
| lhop1lem.r | |- R = ( A + ( r / 2 ) ) |
||
| Assertion | lhop1lem | |- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) < ( 2 x. E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhop1.a | |- ( ph -> A e. RR ) |
|
| 2 | lhop1.b | |- ( ph -> B e. RR* ) |
|
| 3 | lhop1.l | |- ( ph -> A < B ) |
|
| 4 | lhop1.f | |- ( ph -> F : ( A (,) B ) --> RR ) |
|
| 5 | lhop1.g | |- ( ph -> G : ( A (,) B ) --> RR ) |
|
| 6 | lhop1.if | |- ( ph -> dom ( RR _D F ) = ( A (,) B ) ) |
|
| 7 | lhop1.ig | |- ( ph -> dom ( RR _D G ) = ( A (,) B ) ) |
|
| 8 | lhop1.f0 | |- ( ph -> 0 e. ( F limCC A ) ) |
|
| 9 | lhop1.g0 | |- ( ph -> 0 e. ( G limCC A ) ) |
|
| 10 | lhop1.gn0 | |- ( ph -> -. 0 e. ran G ) |
|
| 11 | lhop1.gd0 | |- ( ph -> -. 0 e. ran ( RR _D G ) ) |
|
| 12 | lhop1.c | |- ( ph -> C e. ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) ) |
|
| 13 | lhop1lem.e | |- ( ph -> E e. RR+ ) |
|
| 14 | lhop1lem.d | |- ( ph -> D e. RR ) |
|
| 15 | lhop1lem.db | |- ( ph -> D <_ B ) |
|
| 16 | lhop1lem.x | |- ( ph -> X e. ( A (,) D ) ) |
|
| 17 | lhop1lem.t | |- ( ph -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E ) |
|
| 18 | lhop1lem.r | |- R = ( A + ( r / 2 ) ) |
|
| 19 | iooss2 | |- ( ( B e. RR* /\ D <_ B ) -> ( A (,) D ) C_ ( A (,) B ) ) |
|
| 20 | 2 15 19 | syl2anc | |- ( ph -> ( A (,) D ) C_ ( A (,) B ) ) |
| 21 | 20 16 | sseldd | |- ( ph -> X e. ( A (,) B ) ) |
| 22 | 4 21 | ffvelcdmd | |- ( ph -> ( F ` X ) e. RR ) |
| 23 | 22 | recnd | |- ( ph -> ( F ` X ) e. CC ) |
| 24 | 5 21 | ffvelcdmd | |- ( ph -> ( G ` X ) e. RR ) |
| 25 | 24 | recnd | |- ( ph -> ( G ` X ) e. CC ) |
| 26 | 5 | ffnd | |- ( ph -> G Fn ( A (,) B ) ) |
| 27 | fnfvelrn | |- ( ( G Fn ( A (,) B ) /\ X e. ( A (,) B ) ) -> ( G ` X ) e. ran G ) |
|
| 28 | 26 21 27 | syl2anc | |- ( ph -> ( G ` X ) e. ran G ) |
| 29 | eleq1 | |- ( ( G ` X ) = 0 -> ( ( G ` X ) e. ran G <-> 0 e. ran G ) ) |
|
| 30 | 28 29 | syl5ibcom | |- ( ph -> ( ( G ` X ) = 0 -> 0 e. ran G ) ) |
| 31 | 30 | necon3bd | |- ( ph -> ( -. 0 e. ran G -> ( G ` X ) =/= 0 ) ) |
| 32 | 10 31 | mpd | |- ( ph -> ( G ` X ) =/= 0 ) |
| 33 | 23 25 32 | divcld | |- ( ph -> ( ( F ` X ) / ( G ` X ) ) e. CC ) |
| 34 | limccl | |- ( ( z e. ( A (,) B ) |-> ( ( ( RR _D F ) ` z ) / ( ( RR _D G ) ` z ) ) ) limCC A ) C_ CC |
|
| 35 | 34 12 | sselid | |- ( ph -> C e. CC ) |
| 36 | 33 35 | subcld | |- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) - C ) e. CC ) |
| 37 | 36 | abscld | |- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) e. RR ) |
| 38 | 13 | rpred | |- ( ph -> E e. RR ) |
| 39 | 2re | |- 2 e. RR |
|
| 40 | 39 | a1i | |- ( ph -> 2 e. RR ) |
| 41 | 40 38 | remulcld | |- ( ph -> ( 2 x. E ) e. RR ) |
| 42 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 43 | 42 | a1i | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 44 | simprl | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> v e. ( TopOpen ` CCfld ) ) |
|
| 45 | simprr | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> A e. v ) |
|
| 46 | eliooord | |- ( X e. ( A (,) D ) -> ( A < X /\ X < D ) ) |
|
| 47 | 16 46 | syl | |- ( ph -> ( A < X /\ X < D ) ) |
| 48 | 47 | simpld | |- ( ph -> A < X ) |
| 49 | ioossre | |- ( A (,) D ) C_ RR |
|
| 50 | 49 16 | sselid | |- ( ph -> X e. RR ) |
| 51 | difrp | |- ( ( A e. RR /\ X e. RR ) -> ( A < X <-> ( X - A ) e. RR+ ) ) |
|
| 52 | 1 50 51 | syl2anc | |- ( ph -> ( A < X <-> ( X - A ) e. RR+ ) ) |
| 53 | 48 52 | mpbid | |- ( ph -> ( X - A ) e. RR+ ) |
| 54 | 53 | adantr | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( X - A ) e. RR+ ) |
| 55 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 56 | 55 | cnfldtopn | |- ( TopOpen ` CCfld ) = ( MetOpen ` ( abs o. - ) ) |
| 57 | 56 | mopni3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ v e. ( TopOpen ` CCfld ) /\ A e. v ) /\ ( X - A ) e. RR+ ) -> E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) ) |
| 58 | 43 44 45 54 57 | syl31anc | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) ) |
| 59 | ssrin | |- ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( A (,) X ) ) ) |
|
| 60 | lbioo | |- -. A e. ( A (,) X ) |
|
| 61 | disjsn | |- ( ( ( A (,) X ) i^i { A } ) = (/) <-> -. A e. ( A (,) X ) ) |
|
| 62 | 60 61 | mpbir | |- ( ( A (,) X ) i^i { A } ) = (/) |
| 63 | disj3 | |- ( ( ( A (,) X ) i^i { A } ) = (/) <-> ( A (,) X ) = ( ( A (,) X ) \ { A } ) ) |
|
| 64 | 62 63 | mpbi | |- ( A (,) X ) = ( ( A (,) X ) \ { A } ) |
| 65 | 64 | ineq2i | |- ( v i^i ( A (,) X ) ) = ( v i^i ( ( A (,) X ) \ { A } ) ) |
| 66 | 59 65 | sseqtrdi | |- ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( ( A (,) X ) \ { A } ) ) ) |
| 67 | 1 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. RR ) |
| 68 | simprl | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR+ ) |
|
| 69 | 68 | rpred | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR ) |
| 70 | 69 | rehalfcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR ) |
| 71 | 67 70 | readdcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A + ( r / 2 ) ) e. RR ) |
| 72 | 18 71 | eqeltrid | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. RR ) |
| 73 | 72 | recnd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. CC ) |
| 74 | 1 | recnd | |- ( ph -> A e. CC ) |
| 75 | 74 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. CC ) |
| 76 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 77 | 76 | cnmetdval | |- ( ( R e. CC /\ A e. CC ) -> ( R ( abs o. - ) A ) = ( abs ` ( R - A ) ) ) |
| 78 | 73 75 77 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) = ( abs ` ( R - A ) ) ) |
| 79 | 18 | oveq1i | |- ( R - A ) = ( ( A + ( r / 2 ) ) - A ) |
| 80 | 69 | recnd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. CC ) |
| 81 | 80 | halfcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. CC ) |
| 82 | 75 81 | pncan2d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A + ( r / 2 ) ) - A ) = ( r / 2 ) ) |
| 83 | 79 82 | eqtrid | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R - A ) = ( r / 2 ) ) |
| 84 | 83 | fveq2d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( R - A ) ) = ( abs ` ( r / 2 ) ) ) |
| 85 | 68 | rphalfcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR+ ) |
| 86 | 85 | rpred | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) e. RR ) |
| 87 | 85 | rpge0d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> 0 <_ ( r / 2 ) ) |
| 88 | 86 87 | absidd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( r / 2 ) ) = ( r / 2 ) ) |
| 89 | 78 84 88 | 3eqtrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) = ( r / 2 ) ) |
| 90 | rphalflt | |- ( r e. RR+ -> ( r / 2 ) < r ) |
|
| 91 | 68 90 | syl | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) < r ) |
| 92 | 89 91 | eqbrtrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R ( abs o. - ) A ) < r ) |
| 93 | 42 | a1i | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 94 | 69 | rexrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r e. RR* ) |
| 95 | elbl3 | |- ( ( ( ( abs o. - ) e. ( *Met ` CC ) /\ r e. RR* ) /\ ( A e. CC /\ R e. CC ) ) -> ( R e. ( A ( ball ` ( abs o. - ) ) r ) <-> ( R ( abs o. - ) A ) < r ) ) |
|
| 96 | 93 94 75 73 95 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R e. ( A ( ball ` ( abs o. - ) ) r ) <-> ( R ( abs o. - ) A ) < r ) ) |
| 97 | 92 96 | mpbird | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A ( ball ` ( abs o. - ) ) r ) ) |
| 98 | 67 85 | ltaddrpd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A < ( A + ( r / 2 ) ) ) |
| 99 | 98 18 | breqtrrdi | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A < R ) |
| 100 | 50 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X e. RR ) |
| 101 | 100 67 | resubcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( X - A ) e. RR ) |
| 102 | simprr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> r < ( X - A ) ) |
|
| 103 | 86 69 101 91 102 | lttrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( r / 2 ) < ( X - A ) ) |
| 104 | 67 86 100 | ltaddsub2d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A + ( r / 2 ) ) < X <-> ( r / 2 ) < ( X - A ) ) ) |
| 105 | 103 104 | mpbird | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A + ( r / 2 ) ) < X ) |
| 106 | 18 105 | eqbrtrid | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R < X ) |
| 107 | 67 | rexrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A e. RR* ) |
| 108 | 50 | rexrd | |- ( ph -> X e. RR* ) |
| 109 | 108 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X e. RR* ) |
| 110 | elioo2 | |- ( ( A e. RR* /\ X e. RR* ) -> ( R e. ( A (,) X ) <-> ( R e. RR /\ A < R /\ R < X ) ) ) |
|
| 111 | 107 109 110 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R e. ( A (,) X ) <-> ( R e. RR /\ A < R /\ R < X ) ) ) |
| 112 | 72 99 106 111 | mpbir3and | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A (,) X ) ) |
| 113 | 97 112 | elind | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ) |
| 114 | 23 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` X ) e. CC ) |
| 115 | 4 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F : ( A (,) B ) --> RR ) |
| 116 | 14 | rexrd | |- ( ph -> D e. RR* ) |
| 117 | 47 | simprd | |- ( ph -> X < D ) |
| 118 | 50 14 117 | ltled | |- ( ph -> X <_ D ) |
| 119 | 108 116 2 118 15 | xrletrd | |- ( ph -> X <_ B ) |
| 120 | iooss2 | |- ( ( B e. RR* /\ X <_ B ) -> ( A (,) X ) C_ ( A (,) B ) ) |
|
| 121 | 2 119 120 | syl2anc | |- ( ph -> ( A (,) X ) C_ ( A (,) B ) ) |
| 122 | 121 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) X ) C_ ( A (,) B ) ) |
| 123 | 122 112 | sseldd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. ( A (,) B ) ) |
| 124 | 115 123 | ffvelcdmd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` R ) e. RR ) |
| 125 | 124 | recnd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F ` R ) e. CC ) |
| 126 | 114 125 | subcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( F ` X ) - ( F ` R ) ) e. CC ) |
| 127 | 25 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` X ) e. CC ) |
| 128 | 5 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G : ( A (,) B ) --> RR ) |
| 129 | 128 123 | ffvelcdmd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` R ) e. RR ) |
| 130 | 129 | recnd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G ` R ) e. CC ) |
| 131 | 127 130 | subcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( G ` X ) - ( G ` R ) ) e. CC ) |
| 132 | fveq2 | |- ( z = R -> ( G ` z ) = ( G ` R ) ) |
|
| 133 | 132 | oveq2d | |- ( z = R -> ( ( G ` X ) - ( G ` z ) ) = ( ( G ` X ) - ( G ` R ) ) ) |
| 134 | 133 | neeq1d | |- ( z = R -> ( ( ( G ` X ) - ( G ` z ) ) =/= 0 <-> ( ( G ` X ) - ( G ` R ) ) =/= 0 ) ) |
| 135 | 11 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> -. 0 e. ran ( RR _D G ) ) |
| 136 | 25 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` X ) e. CC ) |
| 137 | 121 | sselda | |- ( ( ph /\ z e. ( A (,) X ) ) -> z e. ( A (,) B ) ) |
| 138 | 5 | ffvelcdmda | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( G ` z ) e. RR ) |
| 139 | 137 138 | syldan | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` z ) e. RR ) |
| 140 | 139 | recnd | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( G ` z ) e. CC ) |
| 141 | 136 140 | subeq0ad | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G ` X ) - ( G ` z ) ) = 0 <-> ( G ` X ) = ( G ` z ) ) ) |
| 142 | ioossre | |- ( A (,) B ) C_ RR |
|
| 143 | 142 137 | sselid | |- ( ( ph /\ z e. ( A (,) X ) ) -> z e. RR ) |
| 144 | 143 | adantr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> z e. RR ) |
| 145 | 50 | ad2antrr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> X e. RR ) |
| 146 | eliooord | |- ( z e. ( A (,) X ) -> ( A < z /\ z < X ) ) |
|
| 147 | 146 | adantl | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( A < z /\ z < X ) ) |
| 148 | 147 | simprd | |- ( ( ph /\ z e. ( A (,) X ) ) -> z < X ) |
| 149 | 148 | adantr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> z < X ) |
| 150 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 151 | 150 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> A e. RR* ) |
| 152 | 2 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> B e. RR* ) |
| 153 | 147 | simpld | |- ( ( ph /\ z e. ( A (,) X ) ) -> A < z ) |
| 154 | 108 116 2 117 15 | xrltletrd | |- ( ph -> X < B ) |
| 155 | 154 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> X < B ) |
| 156 | iccssioo | |- ( ( ( A e. RR* /\ B e. RR* ) /\ ( A < z /\ X < B ) ) -> ( z [,] X ) C_ ( A (,) B ) ) |
|
| 157 | 151 152 153 155 156 | syl22anc | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( z [,] X ) C_ ( A (,) B ) ) |
| 158 | 157 | adantr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z [,] X ) C_ ( A (,) B ) ) |
| 159 | ax-resscn | |- RR C_ CC |
|
| 160 | 159 | a1i | |- ( ph -> RR C_ CC ) |
| 161 | fss | |- ( ( G : ( A (,) B ) --> RR /\ RR C_ CC ) -> G : ( A (,) B ) --> CC ) |
|
| 162 | 5 159 161 | sylancl | |- ( ph -> G : ( A (,) B ) --> CC ) |
| 163 | 142 | a1i | |- ( ph -> ( A (,) B ) C_ RR ) |
| 164 | dvcn | |- ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D G ) = ( A (,) B ) ) -> G e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 165 | 160 162 163 7 164 | syl31anc | |- ( ph -> G e. ( ( A (,) B ) -cn-> CC ) ) |
| 166 | cncfcdm | |- ( ( RR C_ CC /\ G e. ( ( A (,) B ) -cn-> CC ) ) -> ( G e. ( ( A (,) B ) -cn-> RR ) <-> G : ( A (,) B ) --> RR ) ) |
|
| 167 | 159 165 166 | sylancr | |- ( ph -> ( G e. ( ( A (,) B ) -cn-> RR ) <-> G : ( A (,) B ) --> RR ) ) |
| 168 | 5 167 | mpbird | |- ( ph -> G e. ( ( A (,) B ) -cn-> RR ) ) |
| 169 | 168 | ad2antrr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> G e. ( ( A (,) B ) -cn-> RR ) ) |
| 170 | rescncf | |- ( ( z [,] X ) C_ ( A (,) B ) -> ( G e. ( ( A (,) B ) -cn-> RR ) -> ( G |` ( z [,] X ) ) e. ( ( z [,] X ) -cn-> RR ) ) ) |
|
| 171 | 158 169 170 | sylc | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( G |` ( z [,] X ) ) e. ( ( z [,] X ) -cn-> RR ) ) |
| 172 | 159 | a1i | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> RR C_ CC ) |
| 173 | 162 | ad2antrr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> G : ( A (,) B ) --> CC ) |
| 174 | 142 | a1i | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( A (,) B ) C_ RR ) |
| 175 | 158 142 | sstrdi | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z [,] X ) C_ RR ) |
| 176 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 177 | 55 176 | dvres | |- ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( z [,] X ) C_ RR ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) ) |
| 178 | 172 173 174 175 177 | syl22anc | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) ) |
| 179 | iccntr | |- ( ( z e. RR /\ X e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) = ( z (,) X ) ) |
|
| 180 | 144 145 179 | syl2anc | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) = ( z (,) X ) ) |
| 181 | 180 | reseq2d | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( z (,) X ) ) ) |
| 182 | 178 181 | eqtrd | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D ( G |` ( z [,] X ) ) ) = ( ( RR _D G ) |` ( z (,) X ) ) ) |
| 183 | 182 | dmeqd | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D ( G |` ( z [,] X ) ) ) = dom ( ( RR _D G ) |` ( z (,) X ) ) ) |
| 184 | ioossicc | |- ( z (,) X ) C_ ( z [,] X ) |
|
| 185 | 184 158 | sstrid | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z (,) X ) C_ ( A (,) B ) ) |
| 186 | 7 | ad2antrr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D G ) = ( A (,) B ) ) |
| 187 | 185 186 | sseqtrrd | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( z (,) X ) C_ dom ( RR _D G ) ) |
| 188 | ssdmres | |- ( ( z (,) X ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( z (,) X ) ) = ( z (,) X ) ) |
|
| 189 | 187 188 | sylib | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( ( RR _D G ) |` ( z (,) X ) ) = ( z (,) X ) ) |
| 190 | 183 189 | eqtrd | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> dom ( RR _D ( G |` ( z [,] X ) ) ) = ( z (,) X ) ) |
| 191 | 143 | rexrd | |- ( ( ph /\ z e. ( A (,) X ) ) -> z e. RR* ) |
| 192 | 108 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> X e. RR* ) |
| 193 | 50 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> X e. RR ) |
| 194 | 143 193 148 | ltled | |- ( ( ph /\ z e. ( A (,) X ) ) -> z <_ X ) |
| 195 | ubicc2 | |- ( ( z e. RR* /\ X e. RR* /\ z <_ X ) -> X e. ( z [,] X ) ) |
|
| 196 | 191 192 194 195 | syl3anc | |- ( ( ph /\ z e. ( A (,) X ) ) -> X e. ( z [,] X ) ) |
| 197 | 196 | fvresd | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G |` ( z [,] X ) ) ` X ) = ( G ` X ) ) |
| 198 | lbicc2 | |- ( ( z e. RR* /\ X e. RR* /\ z <_ X ) -> z e. ( z [,] X ) ) |
|
| 199 | 191 192 194 198 | syl3anc | |- ( ( ph /\ z e. ( A (,) X ) ) -> z e. ( z [,] X ) ) |
| 200 | 199 | fvresd | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G |` ( z [,] X ) ) ` z ) = ( G ` z ) ) |
| 201 | 197 200 | eqeq12d | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G |` ( z [,] X ) ) ` X ) = ( ( G |` ( z [,] X ) ) ` z ) <-> ( G ` X ) = ( G ` z ) ) ) |
| 202 | 201 | biimpar | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( G |` ( z [,] X ) ) ` X ) = ( ( G |` ( z [,] X ) ) ` z ) ) |
| 203 | 202 | eqcomd | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( G |` ( z [,] X ) ) ` z ) = ( ( G |` ( z [,] X ) ) ` X ) ) |
| 204 | 144 145 149 171 190 203 | rolle | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> E. w e. ( z (,) X ) ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 ) |
| 205 | 182 | fveq1d | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = ( ( ( RR _D G ) |` ( z (,) X ) ) ` w ) ) |
| 206 | fvres | |- ( w e. ( z (,) X ) -> ( ( ( RR _D G ) |` ( z (,) X ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
|
| 207 | 205 206 | sylan9eq | |- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
| 208 | dvf | |- ( RR _D G ) : dom ( RR _D G ) --> CC |
|
| 209 | 7 | feq2d | |- ( ph -> ( ( RR _D G ) : dom ( RR _D G ) --> CC <-> ( RR _D G ) : ( A (,) B ) --> CC ) ) |
| 210 | 208 209 | mpbii | |- ( ph -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 211 | 210 | ad2antrr | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 212 | 211 | ffnd | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
| 213 | 212 | adantr | |- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
| 214 | 185 | sselda | |- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> w e. ( A (,) B ) ) |
| 215 | fnfvelrn | |- ( ( ( RR _D G ) Fn ( A (,) B ) /\ w e. ( A (,) B ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) ) |
|
| 216 | 213 214 215 | syl2anc | |- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) ) |
| 217 | 207 216 | eqeltrd | |- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) e. ran ( RR _D G ) ) |
| 218 | eleq1 | |- ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
|
| 219 | 217 218 | syl5ibcom | |- ( ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) /\ w e. ( z (,) X ) ) -> ( ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
| 220 | 219 | rexlimdva | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> ( E. w e. ( z (,) X ) ( ( RR _D ( G |` ( z [,] X ) ) ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
| 221 | 204 220 | mpd | |- ( ( ( ph /\ z e. ( A (,) X ) ) /\ ( G ` X ) = ( G ` z ) ) -> 0 e. ran ( RR _D G ) ) |
| 222 | 221 | ex | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) = ( G ` z ) -> 0 e. ran ( RR _D G ) ) ) |
| 223 | 141 222 | sylbid | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( G ` X ) - ( G ` z ) ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
| 224 | 223 | necon3bd | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( G ` X ) - ( G ` z ) ) =/= 0 ) ) |
| 225 | 135 224 | mpd | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) =/= 0 ) |
| 226 | 225 | ralrimiva | |- ( ph -> A. z e. ( A (,) X ) ( ( G ` X ) - ( G ` z ) ) =/= 0 ) |
| 227 | 226 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A. z e. ( A (,) X ) ( ( G ` X ) - ( G ` z ) ) =/= 0 ) |
| 228 | 134 227 112 | rspcdva | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( G ` X ) - ( G ` R ) ) =/= 0 ) |
| 229 | 126 131 228 | divcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) e. CC ) |
| 230 | 35 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> C e. CC ) |
| 231 | 229 230 | subcld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) e. CC ) |
| 232 | 231 | abscld | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) e. RR ) |
| 233 | 38 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E e. RR ) |
| 234 | 116 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> D e. RR* ) |
| 235 | 117 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X < D ) |
| 236 | iccssioo | |- ( ( ( A e. RR* /\ D e. RR* ) /\ ( A < R /\ X < D ) ) -> ( R [,] X ) C_ ( A (,) D ) ) |
|
| 237 | 107 234 99 235 236 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ ( A (,) D ) ) |
| 238 | 20 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) D ) C_ ( A (,) B ) ) |
| 239 | 237 238 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ ( A (,) B ) ) |
| 240 | fss | |- ( ( F : ( A (,) B ) --> RR /\ RR C_ CC ) -> F : ( A (,) B ) --> CC ) |
|
| 241 | 4 159 240 | sylancl | |- ( ph -> F : ( A (,) B ) --> CC ) |
| 242 | dvcn | |- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC /\ ( A (,) B ) C_ RR ) /\ dom ( RR _D F ) = ( A (,) B ) ) -> F e. ( ( A (,) B ) -cn-> CC ) ) |
|
| 243 | 160 241 163 6 242 | syl31anc | |- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
| 244 | cncfcdm | |- ( ( RR C_ CC /\ F e. ( ( A (,) B ) -cn-> CC ) ) -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
|
| 245 | 159 243 244 | sylancr | |- ( ph -> ( F e. ( ( A (,) B ) -cn-> RR ) <-> F : ( A (,) B ) --> RR ) ) |
| 246 | 4 245 | mpbird | |- ( ph -> F e. ( ( A (,) B ) -cn-> RR ) ) |
| 247 | 246 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F e. ( ( A (,) B ) -cn-> RR ) ) |
| 248 | rescncf | |- ( ( R [,] X ) C_ ( A (,) B ) -> ( F e. ( ( A (,) B ) -cn-> RR ) -> ( F |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) ) |
|
| 249 | 239 247 248 | sylc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( F |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) |
| 250 | 168 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G e. ( ( A (,) B ) -cn-> RR ) ) |
| 251 | rescncf | |- ( ( R [,] X ) C_ ( A (,) B ) -> ( G e. ( ( A (,) B ) -cn-> RR ) -> ( G |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) ) |
|
| 252 | 239 250 251 | sylc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( G |` ( R [,] X ) ) e. ( ( R [,] X ) -cn-> RR ) ) |
| 253 | 159 | a1i | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> RR C_ CC ) |
| 254 | 241 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> F : ( A (,) B ) --> CC ) |
| 255 | 142 | a1i | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) B ) C_ RR ) |
| 256 | iccssre | |- ( ( R e. RR /\ X e. RR ) -> ( R [,] X ) C_ RR ) |
|
| 257 | 72 100 256 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R [,] X ) C_ RR ) |
| 258 | 55 176 | dvres | |- ( ( ( RR C_ CC /\ F : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( R [,] X ) C_ RR ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
| 259 | 253 254 255 257 258 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
| 260 | iccntr | |- ( ( R e. RR /\ X e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) = ( R (,) X ) ) |
|
| 261 | 72 100 260 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) = ( R (,) X ) ) |
| 262 | 261 | reseq2d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( R (,) X ) ) ) |
| 263 | 259 262 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( F |` ( R [,] X ) ) ) = ( ( RR _D F ) |` ( R (,) X ) ) ) |
| 264 | 263 | dmeqd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( F |` ( R [,] X ) ) ) = dom ( ( RR _D F ) |` ( R (,) X ) ) ) |
| 265 | 67 72 99 | ltled | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> A <_ R ) |
| 266 | iooss1 | |- ( ( A e. RR* /\ A <_ R ) -> ( R (,) X ) C_ ( A (,) X ) ) |
|
| 267 | 107 265 266 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) X ) ) |
| 268 | 118 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> X <_ D ) |
| 269 | iooss2 | |- ( ( D e. RR* /\ X <_ D ) -> ( A (,) X ) C_ ( A (,) D ) ) |
|
| 270 | 234 268 269 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( A (,) X ) C_ ( A (,) D ) ) |
| 271 | 267 270 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) D ) ) |
| 272 | 271 238 | sstrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ ( A (,) B ) ) |
| 273 | 6 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D F ) = ( A (,) B ) ) |
| 274 | 272 273 | sseqtrrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ dom ( RR _D F ) ) |
| 275 | ssdmres | |- ( ( R (,) X ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( R (,) X ) ) = ( R (,) X ) ) |
|
| 276 | 274 275 | sylib | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( ( RR _D F ) |` ( R (,) X ) ) = ( R (,) X ) ) |
| 277 | 264 276 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( F |` ( R [,] X ) ) ) = ( R (,) X ) ) |
| 278 | 162 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> G : ( A (,) B ) --> CC ) |
| 279 | 55 176 | dvres | |- ( ( ( RR C_ CC /\ G : ( A (,) B ) --> CC ) /\ ( ( A (,) B ) C_ RR /\ ( R [,] X ) C_ RR ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
| 280 | 253 278 255 257 279 | syl22anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) ) |
| 281 | 261 | reseq2d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D G ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( R (,) X ) ) ) |
| 282 | 280 281 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( RR _D ( G |` ( R [,] X ) ) ) = ( ( RR _D G ) |` ( R (,) X ) ) ) |
| 283 | 282 | dmeqd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( G |` ( R [,] X ) ) ) = dom ( ( RR _D G ) |` ( R (,) X ) ) ) |
| 284 | 7 | adantr | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D G ) = ( A (,) B ) ) |
| 285 | 272 284 | sseqtrrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( R (,) X ) C_ dom ( RR _D G ) ) |
| 286 | ssdmres | |- ( ( R (,) X ) C_ dom ( RR _D G ) <-> dom ( ( RR _D G ) |` ( R (,) X ) ) = ( R (,) X ) ) |
|
| 287 | 285 286 | sylib | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( ( RR _D G ) |` ( R (,) X ) ) = ( R (,) X ) ) |
| 288 | 283 287 | eqtrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> dom ( RR _D ( G |` ( R [,] X ) ) ) = ( R (,) X ) ) |
| 289 | 72 100 106 249 252 277 288 | cmvth | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. w e. ( R (,) X ) ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) ) |
| 290 | 72 | rexrd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R e. RR* ) |
| 291 | 290 | adantr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R e. RR* ) |
| 292 | 108 | ad2antrr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> X e. RR* ) |
| 293 | 72 100 106 | ltled | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> R <_ X ) |
| 294 | 293 | adantr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R <_ X ) |
| 295 | ubicc2 | |- ( ( R e. RR* /\ X e. RR* /\ R <_ X ) -> X e. ( R [,] X ) ) |
|
| 296 | 291 292 294 295 | syl3anc | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> X e. ( R [,] X ) ) |
| 297 | 296 | fvresd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F |` ( R [,] X ) ) ` X ) = ( F ` X ) ) |
| 298 | lbicc2 | |- ( ( R e. RR* /\ X e. RR* /\ R <_ X ) -> R e. ( R [,] X ) ) |
|
| 299 | 291 292 294 298 | syl3anc | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> R e. ( R [,] X ) ) |
| 300 | 299 | fvresd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F |` ( R [,] X ) ) ` R ) = ( F ` R ) ) |
| 301 | 297 300 | oveq12d | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) = ( ( F ` X ) - ( F ` R ) ) ) |
| 302 | 282 | fveq1d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) = ( ( ( RR _D G ) |` ( R (,) X ) ) ` w ) ) |
| 303 | fvres | |- ( w e. ( R (,) X ) -> ( ( ( RR _D G ) |` ( R (,) X ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
|
| 304 | 302 303 | sylan9eq | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) = ( ( RR _D G ) ` w ) ) |
| 305 | 301 304 | oveq12d | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) ) |
| 306 | 296 | fvresd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G |` ( R [,] X ) ) ` X ) = ( G ` X ) ) |
| 307 | 299 | fvresd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G |` ( R [,] X ) ) ` R ) = ( G ` R ) ) |
| 308 | 306 307 | oveq12d | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) = ( ( G ` X ) - ( G ` R ) ) ) |
| 309 | 263 | fveq1d | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) = ( ( ( RR _D F ) |` ( R (,) X ) ) ` w ) ) |
| 310 | fvres | |- ( w e. ( R (,) X ) -> ( ( ( RR _D F ) |` ( R (,) X ) ) ` w ) = ( ( RR _D F ) ` w ) ) |
|
| 311 | 309 310 | sylan9eq | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) = ( ( RR _D F ) ` w ) ) |
| 312 | 308 311 | oveq12d | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) = ( ( ( G ` X ) - ( G ` R ) ) x. ( ( RR _D F ) ` w ) ) ) |
| 313 | 131 | adantr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G ` X ) - ( G ` R ) ) e. CC ) |
| 314 | dvf | |- ( RR _D F ) : dom ( RR _D F ) --> CC |
|
| 315 | 6 | feq2d | |- ( ph -> ( ( RR _D F ) : dom ( RR _D F ) --> CC <-> ( RR _D F ) : ( A (,) B ) --> CC ) ) |
| 316 | 314 315 | mpbii | |- ( ph -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 317 | 316 | ad2antrr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D F ) : ( A (,) B ) --> CC ) |
| 318 | 272 | sselda | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> w e. ( A (,) B ) ) |
| 319 | 317 318 | ffvelcdmd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D F ) ` w ) e. CC ) |
| 320 | 313 319 | mulcomd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( G ` X ) - ( G ` R ) ) x. ( ( RR _D F ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) |
| 321 | 312 320 | eqtrd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) |
| 322 | 305 321 | eqeq12d | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) ) |
| 323 | 126 | adantr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( F ` X ) - ( F ` R ) ) e. CC ) |
| 324 | 210 | ad2antrr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D G ) : ( A (,) B ) --> CC ) |
| 325 | 324 318 | ffvelcdmd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) e. CC ) |
| 326 | 228 | adantr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( G ` X ) - ( G ` R ) ) =/= 0 ) |
| 327 | 11 | ad2antrr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> -. 0 e. ran ( RR _D G ) ) |
| 328 | 324 | ffnd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( RR _D G ) Fn ( A (,) B ) ) |
| 329 | 328 318 215 | syl2anc | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) e. ran ( RR _D G ) ) |
| 330 | eleq1 | |- ( ( ( RR _D G ) ` w ) = 0 -> ( ( ( RR _D G ) ` w ) e. ran ( RR _D G ) <-> 0 e. ran ( RR _D G ) ) ) |
|
| 331 | 329 330 | syl5ibcom | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( RR _D G ) ` w ) = 0 -> 0 e. ran ( RR _D G ) ) ) |
| 332 | 331 | necon3bd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( -. 0 e. ran ( RR _D G ) -> ( ( RR _D G ) ` w ) =/= 0 ) ) |
| 333 | 327 332 | mpd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( RR _D G ) ` w ) =/= 0 ) |
| 334 | 323 313 319 325 326 333 | divmuleqd | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) x. ( ( RR _D G ) ` w ) ) = ( ( ( RR _D F ) ` w ) x. ( ( G ` X ) - ( G ` R ) ) ) ) ) |
| 335 | 322 334 | bitr4d | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) ) |
| 336 | 335 | rexbidva | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( E. w e. ( R (,) X ) ( ( ( ( F |` ( R [,] X ) ) ` X ) - ( ( F |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( G |` ( R [,] X ) ) ) ` w ) ) = ( ( ( ( G |` ( R [,] X ) ) ` X ) - ( ( G |` ( R [,] X ) ) ` R ) ) x. ( ( RR _D ( F |` ( R [,] X ) ) ) ` w ) ) <-> E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) ) |
| 337 | 289 336 | mpbid | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) |
| 338 | fveq2 | |- ( t = w -> ( ( RR _D F ) ` t ) = ( ( RR _D F ) ` w ) ) |
|
| 339 | fveq2 | |- ( t = w -> ( ( RR _D G ) ` t ) = ( ( RR _D G ) ` w ) ) |
|
| 340 | 338 339 | oveq12d | |- ( t = w -> ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) ) |
| 341 | 340 | fvoveq1d | |- ( t = w -> ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) = ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) ) |
| 342 | 341 | breq1d | |- ( t = w -> ( ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E <-> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) ) |
| 343 | 17 | ad2antrr | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> A. t e. ( A (,) D ) ( abs ` ( ( ( ( RR _D F ) ` t ) / ( ( RR _D G ) ` t ) ) - C ) ) < E ) |
| 344 | 271 | sselda | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> w e. ( A (,) D ) ) |
| 345 | 342 343 344 | rspcdva | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) |
| 346 | fvoveq1 | |- ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) = ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) ) |
|
| 347 | 346 | breq1d | |- ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E <-> ( abs ` ( ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) - C ) ) < E ) ) |
| 348 | 345 347 | syl5ibrcom | |- ( ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) /\ w e. ( R (,) X ) ) -> ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) ) |
| 349 | 348 | rexlimdva | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( E. w e. ( R (,) X ) ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) = ( ( ( RR _D F ) ` w ) / ( ( RR _D G ) ` w ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) ) |
| 350 | 337 349 | mpd | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) < E ) |
| 351 | 232 233 350 | ltled | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) |
| 352 | fveq2 | |- ( u = R -> ( F ` u ) = ( F ` R ) ) |
|
| 353 | 352 | oveq2d | |- ( u = R -> ( ( F ` X ) - ( F ` u ) ) = ( ( F ` X ) - ( F ` R ) ) ) |
| 354 | fveq2 | |- ( u = R -> ( G ` u ) = ( G ` R ) ) |
|
| 355 | 354 | oveq2d | |- ( u = R -> ( ( G ` X ) - ( G ` u ) ) = ( ( G ` X ) - ( G ` R ) ) ) |
| 356 | 353 355 | oveq12d | |- ( u = R -> ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) = ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) ) |
| 357 | 356 | fvoveq1d | |- ( u = R -> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) = ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) ) |
| 358 | 357 | breq1d | |- ( u = R -> ( ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) ) |
| 359 | 358 | rspcev | |- ( ( R e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) /\ ( abs ` ( ( ( ( F ` X ) - ( F ` R ) ) / ( ( G ` X ) - ( G ` R ) ) ) - C ) ) <_ E ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
| 360 | 113 351 359 | syl2anc | |- ( ( ph /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
| 361 | 360 | adantlr | |- ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
| 362 | ssrexv | |- ( ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) C_ ( v i^i ( ( A (,) X ) \ { A } ) ) -> ( E. u e. ( ( A ( ball ` ( abs o. - ) ) r ) i^i ( A (,) X ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
|
| 363 | 66 361 362 | syl2imc | |- ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ ( r e. RR+ /\ r < ( X - A ) ) ) -> ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
| 364 | 363 | anassrs | |- ( ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ r e. RR+ ) /\ r < ( X - A ) ) -> ( ( A ( ball ` ( abs o. - ) ) r ) C_ v -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
| 365 | 364 | expimpd | |- ( ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) /\ r e. RR+ ) -> ( ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
| 366 | 365 | rexlimdva | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> ( E. r e. RR+ ( r < ( X - A ) /\ ( A ( ball ` ( abs o. - ) ) r ) C_ v ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
| 367 | 58 366 | mpd | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
| 368 | inss2 | |- ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( ( A (,) X ) \ { A } ) |
|
| 369 | difss | |- ( ( A (,) X ) \ { A } ) C_ ( A (,) X ) |
|
| 370 | 368 369 | sstri | |- ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( A (,) X ) |
| 371 | 370 | sseli | |- ( u e. ( v i^i ( ( A (,) X ) \ { A } ) ) -> u e. ( A (,) X ) ) |
| 372 | fveq2 | |- ( z = u -> ( F ` z ) = ( F ` u ) ) |
|
| 373 | 372 | oveq2d | |- ( z = u -> ( ( F ` X ) - ( F ` z ) ) = ( ( F ` X ) - ( F ` u ) ) ) |
| 374 | fveq2 | |- ( z = u -> ( G ` z ) = ( G ` u ) ) |
|
| 375 | 374 | oveq2d | |- ( z = u -> ( ( G ` X ) - ( G ` z ) ) = ( ( G ` X ) - ( G ` u ) ) ) |
| 376 | 373 375 | oveq12d | |- ( z = u -> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) = ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) ) |
| 377 | eqid | |- ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) = ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) |
|
| 378 | ovex | |- ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) e. _V |
|
| 379 | 376 377 378 | fvmpt | |- ( u e. ( A (,) X ) -> ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) = ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) ) |
| 380 | 379 | fvoveq1d | |- ( u e. ( A (,) X ) -> ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) = ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) ) |
| 381 | 380 | breq1d | |- ( u e. ( A (,) X ) -> ( ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
| 382 | 371 381 | syl | |- ( u e. ( v i^i ( ( A (,) X ) \ { A } ) ) -> ( ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) ) |
| 383 | 382 | rexbiia | |- ( E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( ( F ` X ) - ( F ` u ) ) / ( ( G ` X ) - ( G ` u ) ) ) - C ) ) <_ E ) |
| 384 | 367 383 | sylibr | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) |
| 385 | ovex | |- ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) e. _V |
|
| 386 | 385 377 | fnmpti | |- ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) Fn ( A (,) X ) |
| 387 | fvoveq1 | |- ( x = ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) -> ( abs ` ( x - C ) ) = ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) ) |
|
| 388 | 387 | breq1d | |- ( x = ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) -> ( ( abs ` ( x - C ) ) <_ E <-> ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) ) |
| 389 | 388 | rexima | |- ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) Fn ( A (,) X ) /\ ( v i^i ( ( A (,) X ) \ { A } ) ) C_ ( A (,) X ) ) -> ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) ) |
| 390 | 386 370 389 | mp2an | |- ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> E. u e. ( v i^i ( ( A (,) X ) \ { A } ) ) ( abs ` ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) ` u ) - C ) ) <_ E ) |
| 391 | 384 390 | sylibr | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E ) |
| 392 | dfrex2 | |- ( E. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) ( abs ` ( x - C ) ) <_ E <-> -. A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) |
|
| 393 | 391 392 | sylib | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> -. A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) |
| 394 | ssrab | |- ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ CC /\ A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) ) |
|
| 395 | 394 | simprbi | |- ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> A. x e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) -. ( abs ` ( x - C ) ) <_ E ) |
| 396 | 393 395 | nsyl | |- ( ( ph /\ ( v e. ( TopOpen ` CCfld ) /\ A e. v ) ) -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) |
| 397 | 396 | expr | |- ( ( ph /\ v e. ( TopOpen ` CCfld ) ) -> ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
| 398 | 397 | ralrimiva | |- ( ph -> A. v e. ( TopOpen ` CCfld ) ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
| 399 | ralinexa | |- ( A. v e. ( TopOpen ` CCfld ) ( A e. v -> -. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) <-> -. E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
|
| 400 | 398 399 | sylib | |- ( ph -> -. E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
| 401 | fvoveq1 | |- ( x = ( ( F ` X ) / ( G ` X ) ) -> ( abs ` ( x - C ) ) = ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) ) |
|
| 402 | 401 | breq1d | |- ( x = ( ( F ` X ) / ( G ` X ) ) -> ( ( abs ` ( x - C ) ) <_ E <-> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
| 403 | 402 | notbid | |- ( x = ( ( F ` X ) / ( G ` X ) ) -> ( -. ( abs ` ( x - C ) ) <_ E <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
| 404 | 403 | elrab3 | |- ( ( ( F ` X ) / ( G ` X ) ) e. CC -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
| 405 | 33 404 | syl | |- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } <-> -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) ) |
| 406 | eleq2 | |- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( F ` X ) / ( G ` X ) ) e. u <-> ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
|
| 407 | sseq2 | |- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u <-> ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) |
|
| 408 | 407 | anbi2d | |- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) <-> ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
| 409 | 408 | rexbidv | |- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) <-> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
| 410 | 406 409 | imbi12d | |- ( u = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> ( ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) <-> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) ) |
| 411 | 23 | adantr | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` X ) e. CC ) |
| 412 | 4 | ffvelcdmda | |- ( ( ph /\ z e. ( A (,) B ) ) -> ( F ` z ) e. RR ) |
| 413 | 137 412 | syldan | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` z ) e. RR ) |
| 414 | 413 | recnd | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( F ` z ) e. CC ) |
| 415 | 411 414 | subcld | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( F ` X ) - ( F ` z ) ) e. CC ) |
| 416 | 136 140 | subcld | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) e. CC ) |
| 417 | eldifsn | |- ( ( ( G ` X ) - ( G ` z ) ) e. ( CC \ { 0 } ) <-> ( ( ( G ` X ) - ( G ` z ) ) e. CC /\ ( ( G ` X ) - ( G ` z ) ) =/= 0 ) ) |
|
| 418 | 416 225 417 | sylanbrc | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( G ` X ) - ( G ` z ) ) e. ( CC \ { 0 } ) ) |
| 419 | ssidd | |- ( ph -> CC C_ CC ) |
|
| 420 | difss | |- ( CC \ { 0 } ) C_ CC |
|
| 421 | 420 | a1i | |- ( ph -> ( CC \ { 0 } ) C_ CC ) |
| 422 | 55 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 423 | cnex | |- CC e. _V |
|
| 424 | 423 | difexi | |- ( CC \ { 0 } ) e. _V |
| 425 | txrest | |- ( ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) /\ ( CC e. _V /\ ( CC \ { 0 } ) e. _V ) ) -> ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) |
|
| 426 | 422 422 423 424 425 | mp4an | |- ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) |
| 427 | unicntop | |- CC = U. ( TopOpen ` CCfld ) |
|
| 428 | 427 | restid | |- ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
| 429 | 422 428 | ax-mp | |- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
| 430 | 429 | oveq1i | |- ( ( ( TopOpen ` CCfld ) |`t CC ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) = ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) |
| 431 | 426 430 | eqtr2i | |- ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. ( CC \ { 0 } ) ) ) |
| 432 | 23 | subid1d | |- ( ph -> ( ( F ` X ) - 0 ) = ( F ` X ) ) |
| 433 | txtopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) ) |
|
| 434 | 422 422 433 | mp2an | |- ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) e. ( TopOn ` ( CC X. CC ) ) |
| 435 | 434 | toponrestid | |- ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) = ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |`t ( CC X. CC ) ) |
| 436 | limcresi | |- ( ( z e. RR |-> ( F ` X ) ) limCC A ) C_ ( ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) limCC A ) |
|
| 437 | ioossre | |- ( A (,) X ) C_ RR |
|
| 438 | resmpt | |- ( ( A (,) X ) C_ RR -> ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` X ) ) ) |
|
| 439 | 437 438 | ax-mp | |- ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` X ) ) |
| 440 | 439 | oveq1i | |- ( ( ( z e. RR |-> ( F ` X ) ) |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A ) |
| 441 | 436 440 | sseqtri | |- ( ( z e. RR |-> ( F ` X ) ) limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A ) |
| 442 | cncfmptc | |- ( ( ( F ` X ) e. RR /\ RR C_ CC /\ RR C_ CC ) -> ( z e. RR |-> ( F ` X ) ) e. ( RR -cn-> RR ) ) |
|
| 443 | 22 160 160 442 | syl3anc | |- ( ph -> ( z e. RR |-> ( F ` X ) ) e. ( RR -cn-> RR ) ) |
| 444 | eqidd | |- ( z = A -> ( F ` X ) = ( F ` X ) ) |
|
| 445 | 443 1 444 | cnmptlimc | |- ( ph -> ( F ` X ) e. ( ( z e. RR |-> ( F ` X ) ) limCC A ) ) |
| 446 | 441 445 | sselid | |- ( ph -> ( F ` X ) e. ( ( z e. ( A (,) X ) |-> ( F ` X ) ) limCC A ) ) |
| 447 | limcresi | |- ( F limCC A ) C_ ( ( F |` ( A (,) X ) ) limCC A ) |
|
| 448 | 4 121 | feqresmpt | |- ( ph -> ( F |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( F ` z ) ) ) |
| 449 | 448 | oveq1d | |- ( ph -> ( ( F |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) ) |
| 450 | 447 449 | sseqtrid | |- ( ph -> ( F limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) ) |
| 451 | 450 8 | sseldd | |- ( ph -> 0 e. ( ( z e. ( A (,) X ) |-> ( F ` z ) ) limCC A ) ) |
| 452 | 55 | subcn | |- - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 453 | 0cn | |- 0 e. CC |
|
| 454 | opelxpi | |- ( ( ( F ` X ) e. CC /\ 0 e. CC ) -> <. ( F ` X ) , 0 >. e. ( CC X. CC ) ) |
|
| 455 | 23 453 454 | sylancl | |- ( ph -> <. ( F ` X ) , 0 >. e. ( CC X. CC ) ) |
| 456 | 434 | toponunii | |- ( CC X. CC ) = U. ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) |
| 457 | 456 | cncnpi | |- ( ( - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( F ` X ) , 0 >. e. ( CC X. CC ) ) -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , 0 >. ) ) |
| 458 | 452 455 457 | sylancr | |- ( ph -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , 0 >. ) ) |
| 459 | 411 414 419 419 55 435 446 451 458 | limccnp2 | |- ( ph -> ( ( F ` X ) - 0 ) e. ( ( z e. ( A (,) X ) |-> ( ( F ` X ) - ( F ` z ) ) ) limCC A ) ) |
| 460 | 432 459 | eqeltrrd | |- ( ph -> ( F ` X ) e. ( ( z e. ( A (,) X ) |-> ( ( F ` X ) - ( F ` z ) ) ) limCC A ) ) |
| 461 | 25 | subid1d | |- ( ph -> ( ( G ` X ) - 0 ) = ( G ` X ) ) |
| 462 | limcresi | |- ( ( z e. RR |-> ( G ` X ) ) limCC A ) C_ ( ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) limCC A ) |
|
| 463 | resmpt | |- ( ( A (,) X ) C_ RR -> ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` X ) ) ) |
|
| 464 | 437 463 | ax-mp | |- ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` X ) ) |
| 465 | 464 | oveq1i | |- ( ( ( z e. RR |-> ( G ` X ) ) |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A ) |
| 466 | 462 465 | sseqtri | |- ( ( z e. RR |-> ( G ` X ) ) limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A ) |
| 467 | cncfmptc | |- ( ( ( G ` X ) e. RR /\ RR C_ CC /\ RR C_ CC ) -> ( z e. RR |-> ( G ` X ) ) e. ( RR -cn-> RR ) ) |
|
| 468 | 24 160 160 467 | syl3anc | |- ( ph -> ( z e. RR |-> ( G ` X ) ) e. ( RR -cn-> RR ) ) |
| 469 | eqidd | |- ( z = A -> ( G ` X ) = ( G ` X ) ) |
|
| 470 | 468 1 469 | cnmptlimc | |- ( ph -> ( G ` X ) e. ( ( z e. RR |-> ( G ` X ) ) limCC A ) ) |
| 471 | 466 470 | sselid | |- ( ph -> ( G ` X ) e. ( ( z e. ( A (,) X ) |-> ( G ` X ) ) limCC A ) ) |
| 472 | limcresi | |- ( G limCC A ) C_ ( ( G |` ( A (,) X ) ) limCC A ) |
|
| 473 | 5 121 | feqresmpt | |- ( ph -> ( G |` ( A (,) X ) ) = ( z e. ( A (,) X ) |-> ( G ` z ) ) ) |
| 474 | 473 | oveq1d | |- ( ph -> ( ( G |` ( A (,) X ) ) limCC A ) = ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) ) |
| 475 | 472 474 | sseqtrid | |- ( ph -> ( G limCC A ) C_ ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) ) |
| 476 | 475 9 | sseldd | |- ( ph -> 0 e. ( ( z e. ( A (,) X ) |-> ( G ` z ) ) limCC A ) ) |
| 477 | opelxpi | |- ( ( ( G ` X ) e. CC /\ 0 e. CC ) -> <. ( G ` X ) , 0 >. e. ( CC X. CC ) ) |
|
| 478 | 25 453 477 | sylancl | |- ( ph -> <. ( G ` X ) , 0 >. e. ( CC X. CC ) ) |
| 479 | 456 | cncnpi | |- ( ( - e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( G ` X ) , 0 >. e. ( CC X. CC ) ) -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( G ` X ) , 0 >. ) ) |
| 480 | 452 478 479 | sylancr | |- ( ph -> - e. ( ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( G ` X ) , 0 >. ) ) |
| 481 | 136 140 419 419 55 435 471 476 480 | limccnp2 | |- ( ph -> ( ( G ` X ) - 0 ) e. ( ( z e. ( A (,) X ) |-> ( ( G ` X ) - ( G ` z ) ) ) limCC A ) ) |
| 482 | 461 481 | eqeltrrd | |- ( ph -> ( G ` X ) e. ( ( z e. ( A (,) X ) |-> ( ( G ` X ) - ( G ` z ) ) ) limCC A ) ) |
| 483 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) |
|
| 484 | 55 483 | divcn | |- / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) |
| 485 | eldifsn | |- ( ( G ` X ) e. ( CC \ { 0 } ) <-> ( ( G ` X ) e. CC /\ ( G ` X ) =/= 0 ) ) |
|
| 486 | 25 32 485 | sylanbrc | |- ( ph -> ( G ` X ) e. ( CC \ { 0 } ) ) |
| 487 | 23 486 | opelxpd | |- ( ph -> <. ( F ` X ) , ( G ` X ) >. e. ( CC X. ( CC \ { 0 } ) ) ) |
| 488 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) |
|
| 489 | 422 420 488 | mp2an | |- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) |
| 490 | txtopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) -> ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) e. ( TopOn ` ( CC X. ( CC \ { 0 } ) ) ) ) |
|
| 491 | 422 489 490 | mp2an | |- ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) e. ( TopOn ` ( CC X. ( CC \ { 0 } ) ) ) |
| 492 | 491 | toponunii | |- ( CC X. ( CC \ { 0 } ) ) = U. ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) |
| 493 | 492 | cncnpi | |- ( ( / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) /\ <. ( F ` X ) , ( G ` X ) >. e. ( CC X. ( CC \ { 0 } ) ) ) -> / e. ( ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , ( G ` X ) >. ) ) |
| 494 | 484 487 493 | sylancr | |- ( ph -> / e. ( ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) CnP ( TopOpen ` CCfld ) ) ` <. ( F ` X ) , ( G ` X ) >. ) ) |
| 495 | 415 418 419 421 55 431 460 482 494 | limccnp2 | |- ( ph -> ( ( F ` X ) / ( G ` X ) ) e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) limCC A ) ) |
| 496 | 415 416 225 | divcld | |- ( ( ph /\ z e. ( A (,) X ) ) -> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) e. CC ) |
| 497 | 496 | fmpttd | |- ( ph -> ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) : ( A (,) X ) --> CC ) |
| 498 | 437 159 | sstri | |- ( A (,) X ) C_ CC |
| 499 | 498 | a1i | |- ( ph -> ( A (,) X ) C_ CC ) |
| 500 | 497 499 74 55 | ellimc2 | |- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) limCC A ) <-> ( ( ( F ` X ) / ( G ` X ) ) e. CC /\ A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) ) ) |
| 501 | 495 500 | mpbid | |- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. CC /\ A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) ) |
| 502 | 501 | simprd | |- ( ph -> A. u e. ( TopOpen ` CCfld ) ( ( ( F ` X ) / ( G ` X ) ) e. u -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ u ) ) ) |
| 503 | notrab | |- ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) = { x e. CC | -. ( abs ` ( x - C ) ) <_ E } |
|
| 504 | 76 | cnmetdval | |- ( ( C e. CC /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( C - x ) ) ) |
| 505 | abssub | |- ( ( C e. CC /\ x e. CC ) -> ( abs ` ( C - x ) ) = ( abs ` ( x - C ) ) ) |
|
| 506 | 504 505 | eqtrd | |- ( ( C e. CC /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( x - C ) ) ) |
| 507 | 35 506 | sylan | |- ( ( ph /\ x e. CC ) -> ( C ( abs o. - ) x ) = ( abs ` ( x - C ) ) ) |
| 508 | 507 | breq1d | |- ( ( ph /\ x e. CC ) -> ( ( C ( abs o. - ) x ) <_ E <-> ( abs ` ( x - C ) ) <_ E ) ) |
| 509 | 508 | rabbidva | |- ( ph -> { x e. CC | ( C ( abs o. - ) x ) <_ E } = { x e. CC | ( abs ` ( x - C ) ) <_ E } ) |
| 510 | 42 | a1i | |- ( ph -> ( abs o. - ) e. ( *Met ` CC ) ) |
| 511 | 38 | rexrd | |- ( ph -> E e. RR* ) |
| 512 | eqid | |- { x e. CC | ( C ( abs o. - ) x ) <_ E } = { x e. CC | ( C ( abs o. - ) x ) <_ E } |
|
| 513 | 56 512 | blcld | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ C e. CC /\ E e. RR* ) -> { x e. CC | ( C ( abs o. - ) x ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 514 | 510 35 511 513 | syl3anc | |- ( ph -> { x e. CC | ( C ( abs o. - ) x ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 515 | 509 514 | eqeltrrd | |- ( ph -> { x e. CC | ( abs ` ( x - C ) ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) ) |
| 516 | 427 | cldopn | |- ( { x e. CC | ( abs ` ( x - C ) ) <_ E } e. ( Clsd ` ( TopOpen ` CCfld ) ) -> ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) e. ( TopOpen ` CCfld ) ) |
| 517 | 515 516 | syl | |- ( ph -> ( CC \ { x e. CC | ( abs ` ( x - C ) ) <_ E } ) e. ( TopOpen ` CCfld ) ) |
| 518 | 503 517 | eqeltrrid | |- ( ph -> { x e. CC | -. ( abs ` ( x - C ) ) <_ E } e. ( TopOpen ` CCfld ) ) |
| 519 | 410 502 518 | rspcdva | |- ( ph -> ( ( ( F ` X ) / ( G ` X ) ) e. { x e. CC | -. ( abs ` ( x - C ) ) <_ E } -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
| 520 | 405 519 | sylbird | |- ( ph -> ( -. ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E -> E. v e. ( TopOpen ` CCfld ) ( A e. v /\ ( ( z e. ( A (,) X ) |-> ( ( ( F ` X ) - ( F ` z ) ) / ( ( G ` X ) - ( G ` z ) ) ) ) " ( v i^i ( ( A (,) X ) \ { A } ) ) ) C_ { x e. CC | -. ( abs ` ( x - C ) ) <_ E } ) ) ) |
| 521 | 400 520 | mt3d | |- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) <_ E ) |
| 522 | 38 | recnd | |- ( ph -> E e. CC ) |
| 523 | 522 | mullidd | |- ( ph -> ( 1 x. E ) = E ) |
| 524 | 1red | |- ( ph -> 1 e. RR ) |
|
| 525 | 1lt2 | |- 1 < 2 |
|
| 526 | 525 | a1i | |- ( ph -> 1 < 2 ) |
| 527 | 524 40 13 526 | ltmul1dd | |- ( ph -> ( 1 x. E ) < ( 2 x. E ) ) |
| 528 | 523 527 | eqbrtrrd | |- ( ph -> E < ( 2 x. E ) ) |
| 529 | 37 38 41 521 528 | lelttrd | |- ( ph -> ( abs ` ( ( ( F ` X ) / ( G ` X ) ) - C ) ) < ( 2 x. E ) ) |